login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A158410
a(n) = 961*n^2 - 2*n.
2
959, 3840, 8643, 15368, 24015, 34584, 47075, 61488, 77823, 96080, 116259, 138360, 162383, 188328, 216195, 245984, 277695, 311328, 346883, 384360, 423759, 465080, 508323, 553488, 600575, 649584, 700515, 753368, 808143, 864840, 923459, 984000
OFFSET
1,1
COMMENTS
The identity (961*n-1)^2-(961*n^2-2*n)*(31)^2 = 1 can be written as A158412(n)^2-a(n)*(31)^2 = 1.
LINKS
Vincenzo Librandi, X^2-AY^2=1
E. J. Barbeau, Polynomial Excursions, Chapter 10: Diophantine equations (2010), pages 84-85 (row 15 in the first table at p. 85, case d(t) = t*(31^2*t-2)).
FORMULA
a(n) = 3*a(n-1) -3*a(n-2) +a(n-3).
G.f.: x*(-959-963*x)/(x-1)^3.
MATHEMATICA
LinearRecurrence[{3, -3, 1}, {959, 3840, 8643}, 50]
Table[961n^2-2n, {n, 40}] (* Harvey P. Dale, Aug 29 2022 *)
PROG
(Magma) I:=[959, 3840, 8643]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+1*Self(n-3): n in [1..50]];
(PARI) a(n) = 961*n^2 - 2*n.
CROSSREFS
Cf. A158412.
Sequence in context: A031903 A226851 A351674 * A108903 A167780 A316338
KEYWORD
nonn,easy
AUTHOR
Vincenzo Librandi, Mar 18 2009
STATUS
approved