login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A167780
Subsequence of A167708 whose indices are 0 mod 5, that is, a(n) = A167708(5n+5).
6
959, 326050, 110856041, 37690727890, 12814736626559, 4356972762302170, 1481357924446111241, 503657337338915519770, 171242013337306830610559, 58221780877346983492070290, 19795234256284637080473288041
OFFSET
0,1
FORMULA
a(n+2) = 340*a(n+1) - a(n).
a(n+1) = 170*a(n) + 39*sqrt(19*a(n)^2 - 1539).
G.f.: (959 - 10*z)/(1 - 340*z + z^2).
a(n) = (220*sqrt(19) + 959)/2*(170 + 39*sqrt(19))^n + (-220*sqrt(19) + 959)/2*(170 - 39*sqrt(19))^n. - Richard Choulet, Nov 13 2009
a(n) = 10*cosh(x*log(170 + 39*Sqrt[19])) - Sqrt[19]*sinh(x*log(170 + 39*Sqrt[19])). - Harvey P. Dale, Aug 06 2013
EXAMPLE
a(0) = A167708(5) = 959, a(1) = A167708(10) = 326050,...
MAPLE
u(0):=959:u(1):=326050:for n from 0 to 20 do u(n+2):=340*u(n+1)-u(n):od:seq(u(n), n=0..20); taylor(((959+326050*z-959*z*340)/(1-340*z+z^2)), z=0, 20); for n from 0 to 20 do u(n):=simplify((220*sqrt(19)+959)/2*(170+39*sqrt(19))^(n)+(-220*sqrt(19)+959)/2*(170-39*sqrt(19))^(n)):od:seq(u(n), n=0..20);
MATHEMATICA
LinearRecurrence[{340, -1}, {959, 326050}, 20] (* Harvey P. Dale, Aug 06 2013 *)
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Richard Choulet, Nov 11 2009
STATUS
approved