login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A167708
Numbers k such that (k^2 - 81)/19 is a square.
7
9, 10, 66, 105, 959, 1530, 2441, 22335, 35634, 326050, 520191, 829930, 7593834, 12115455, 110856041, 176863410, 282173759, 2581881225, 4119219066, 37690727890, 60133039209, 95938248130, 877832022666, 1400522366985
OFFSET
1,1
REFERENCES
A. H. Beiler, "Recreations in the theory of numbers": Ex. 38, p. 298 (Dover Publications, Inc., New York, 1966).
FORMULA
G.f.: (9 + 10*z + 66*z^2 + 105*z^3 + 959*z^4 + 1530*z^5 + 2441*z^6 + 22335*z^7 + 35634*z^8 + 326050*z^9 - 340*z^5*(9 + 10*z + 66*z^2 + 105*z^3 +959*z^4))/ (1 - 340*z^5 + z^10).
a(n+10) = 340*a(n+5) - a(n).
On every subsequence mod 5: a(n+2) = 340*a(n+1) - a(n).
On every subsequence mod 5: a(n+2) = 170*a(n) + 39*sqrt(19*a(n)^2 - 1539).
for n == 0 (mod 5): a(n) = (9/2)*(170 + 39*sqrt(19))^(n) + (9/2)*(170 - 39*sqrt(19))^(n); the subsequence is 9, 1530, 520191, 176863410, 60133039209, 20445056467650, 6951259065961791, 2363407637370541290, 803551645446918076809, ...
for n == 1 (mod 5): a(n) = (sqrt(19) + 10)/2*(170 + 39*sqrt(19))^(n) + (-sqrt(19) + 10)/2*(170 - 39*sqrt(19))^(n); the subsequence is 10, 2441, 829930, 282173759, 95938248130, 32618722190441, 11090269606501810, 3770659047488424959, 1282012985876457984250, ...
for n == 2 (mod 5): a(n) = (15*sqrt(19) + 66)/2*(170 + 39*sqrt(19))^(n) + (-15*sqrt(19) + 66)/2*(170 - 39*sqrt(19))^(n); the subsequence is 66, 22335, 7593834, 2581881225, 877832022666, 298460305825215, 101475626148550434, 34501414430201322345, 11730379430642301046866, ...
for n == 3 (mod 5): a(n) = (24*sqrt(19) + 105)/2*(170 + 39*sqrt(19))^(n) + (-24*sqrt(19) + 105)/2*(170 - 39*sqrt(19))^(n); the subsequence is 105, 35634, 12115455, 4119219066, 1400522366985, 476173485555834, 161897584566616575, 55044702579164079666, 18715036979331220469865, ...
for n == 4 (mod 5): a(n) = (220*sqrt(19) + 959)/2*(170 + 39*sqrt(19))^(n) + (-220*sqrt(19) + 959)/2*(170 - 39*sqrt(19))^(n); the subsequence is 959, 326050, 110856041, 37690727890, 12814736626559, 4356972762302170, 1481357924446111241, 503657337338915519770, 171242013337306830610559, ...
EXAMPLE
a(0)=9 because (9^2 - 81)/19=0 in N; a(1)=10 because (10^2 - 81)/19=1 in N.
MAPLE
a(0):=9:a(1):=10:a(2):=66:a(3):=105:a(4):=959:a(5):=1530:a(6):=2441:a(7):=22335:a(8):=35634:a(9):=326050:for n from 0 to 40 do a(n+10):=340*a(n+5)-a(n):od:seq(a(n), n=0..40);
MATHEMATICA
Table[n /. {ToRules[Reduce[n > 0 && k >= 0 && n^2-81 == 19*k^2, n, Integers] /. C[1] -> c]} // Simplify, {c, 0, 5}] // Flatten // Union (* Jean-François Alcover, Dec 19 2013 *)
LinearRecurrence[{0, 0, 0, 0, 340, 0, 0, 0, 0, -1}, {9, 10, 66, 105, 959, 1530, 2441, 22335, 35634, 326050}, 100] (* G. C. Greubel, Jun 20 2016 *)
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Richard Choulet, Nov 10 2009, corrected Nov 12 2009
STATUS
approved