login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A372764
Number of partitions of [n] having exactly two blocks of minimal size.
2
0, 0, 1, 0, 9, 10, 70, 336, 1393, 6210, 41331, 228635, 1315974, 8779134, 61675419, 434566510, 3237964993, 25386526258, 207569429548, 1756564362651, 15418550267179, 140015129879331, 1316198207272686, 12786566843038549, 128035136707876270, 1319513338177755510
OFFSET
0,5
LINKS
EXAMPLE
a(2) = 1: 1|2.
a(4) = 9: 12|34, 12|3|4, 13|24, 13|2|4, 14|23, 1|23|4, 14|2|3, 1|24|3, 1|2|34.
a(5) = 10: 123|4|5, 124|3|5, 125|3|4, 134|2|5, 135|2|4, 1|234|5, 1|235|4, 145|2|3, 1|245|3, 1|2|345.
MAPLE
b:= proc(n, m, t) option remember; `if`(n=0,
`if`(t=2, 1, 0), add(binomial(n-1, j-1)*b(n-j, min(j, m),
`if`(j<m, 1, `if`(j=m, min(3, t+1), t))), j=1..n))
end:
a:= n-> b(n$2, 0):
seq(a(n), n=0..25);
CROSSREFS
Column k=2 of A372762.
Sequence in context: A048070 A341527 A167708 * A135332 A098325 A101242
KEYWORD
nonn
AUTHOR
Alois P. Heinz, May 12 2024
STATUS
approved