login
A372765
Decimal expansion of Lichtman constant f(N(2)).
3
1, 1, 4, 4, 8, 1, 6, 5, 7, 3, 4, 0, 5, 9, 1, 7, 9, 9, 1, 5, 2, 4, 4, 5, 0, 1, 7, 3, 8, 9, 3, 3, 4, 1, 0, 7, 9, 1, 3, 1, 3, 0, 4, 9, 7, 4, 0, 1, 7, 4, 3, 6, 7, 3, 9, 1, 1, 9, 8, 9, 7, 6, 7, 3, 1, 7, 3, 0, 4, 9, 8, 7, 5, 5, 6, 8, 3, 2, 1, 1, 7, 6, 4, 9, 1, 8, 8, 2, 0, 6, 7, 5, 1, 7, 2, 3, 8, 7, 8, 8, 0, 7, 1, 1, 6
OFFSET
1,3
COMMENTS
Definition:
f(N(k)) = Sum_{n>1 and (big) Omega(n)=k} 1/(n*log(n)), where (big) Omega is number of prime divisors of n counted with multiplicity see A001222.
f(N(k)) = Integral_{s>=1} P_k(s), where P_k(s) = Sum_{n>1 and (big) Omega(n)=k} 1/n^s.
Lichtman constant f(N(1)) see A137245.
Lichtman constant f(N(2)) this sequence.
Lichtman constant f(N(3)) see A372827.
Lichtman constant f(N(4)) see A372828.
Minimal value of f(N(k)) occurs for k=6 f(N(6)) = 0.9887534530145...
For k>=6 1>f(N(k+1))>f(N(k).
When k -> oo then f(N(k)) -> 1.
Value computed and communicated by Bill Allombert.
EXAMPLE
1.1448165734059179915...
PROG
(PARI) pz(x)= sum(n=1, max(2, bitprecision(x)/x), my(a=moebius(n)); if(a!=0, a*log(zeta(n*x))/n));
Lichtman(n)=intnum(s=1, [oo, log(2)], exp(sum(i=1, n, pz(i*s)*x^i/i)+O(x^(n+1)))-1)
Lichtman(20)
\\ Bill Allombert, May 14 2024 [via Artur Jasinski]
KEYWORD
nonn,cons
AUTHOR
Artur Jasinski, May 14 2024
STATUS
approved