OFFSET
1,3
COMMENTS
Definition:
f(N(k)) = Sum_{n>1 and (big) Omega(n)=k} 1/(n*log(n)), where (big) Omega is number of prime divisors of n counted with multiplicity see A001222.
f(N(k)) = Integral_{s>=1} P_k(s), where P_k(s) = Sum_{n>1 and (big) Omega(n)=k} 1/n^s.
Lichtman constant f(N(1)) see A137245.
Lichtman constant f(N(2)) this sequence.
Lichtman constant f(N(3)) see A372827.
Lichtman constant f(N(4)) see A372828.
Minimal value of f(N(k)) occurs for k=6 f(N(6)) = 0.9887534530145...
For k>=6 1>f(N(k+1))>f(N(k).
When k -> oo then f(N(k)) -> 1.
Value computed and communicated by Bill Allombert.
LINKS
Bill Allombert, Results of pari computation of Lichtman constants f(N(k)) with precision 500 decimals for k=1..20, email 20.06.2023
Jared Duker Lichtman, Almost primes and the Banks-Martin conjecture, arXiv:1909.00804 [math.NT], 2019 (Figure 2 left column).
EXAMPLE
1.1448165734059179915...
PROG
(PARI) pz(x)= sum(n=1, max(2, bitprecision(x)/x), my(a=moebius(n)); if(a!=0, a*log(zeta(n*x))/n));
Lichtman(n)=intnum(s=1, [oo, log(2)], exp(sum(i=1, n, pz(i*s)*x^i/i)+O(x^(n+1)))-1)
Lichtman(20)
\\ Bill Allombert, May 14 2024 [via Artur Jasinski]
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
Artur Jasinski, May 14 2024
STATUS
approved