OFFSET
0,1
COMMENTS
Definition:
f(N*(k)) = Integral_{s>=1} P_k*(s), where P_k*(s) = Sum_{n>1 and (big) Omega(n)=k} mu(n)^2/n^s, where mu is Möbius (or Moebius) Mu function see A008683, and (big) Omega is number of prime divisors of n counted with multiplicity see A001222.
Lichtman constant f(N*(1)) see A137245.
Lichtman constant f(N*(2)) this sequence.
Lichtman constant f(N*(3)) see A370112.
Lichtman constant f(N*(4)) see A370113.
when k -> oo than f(N*(k) -> 6/Pi^2 = 0.607927101854... see A059956.
Value computed and communicated by Bill Allombert.
LINKS
Bill Allombert, Results of pari computation of Lichtman constants f(N*(k)) with precision 500 decimals for k=1..20, email 20.06.2023
Jared Duker Lichtman, Almost primes and the Banks-Martin conjecture, arXiv:1909.00804 [math.NT], 2019 (Figure 2 right column).
EXAMPLE
0.890925479476318332...
PROG
(PARI) pz(x)= sum(n=1, max(2, bitprecision(x)/x), my(a=moebius(n)); if(a!=0, a*log(zeta(n*x))/n));
Lichtman(n)=intnum(s=1, [oo, log(2)], exp(-sum(i=1, n, pz(i*s)*x^i/i)+O(x^(n+1)))-1)
Lichtman(20)
\\ Bill Allombert, Feb 14 2014 [via Artur Jasinski]
CROSSREFS
KEYWORD
cons,nonn
AUTHOR
Artur Jasinski, Feb 09 2024
STATUS
approved