login
A370091
The smallest number such that exactly n numbers k exist such that a(n) - k = sopfr(a(n)) + sopfr(k), where sopfr(m) is the sum of the primes dividing m, with repetition.
3
6, 35, 77, 169, 287, 1147, 2623, 1517, 7739, 17792, 4352, 14647, 71107, 55488, 114091, 121673, 167137, 206837, 333797, 762079, 554484, 909157, 277928, 722473, 2165407, 3249569, 4328483, 2498227, 5271391, 5770603, 9178891, 8321771, 15732791, 16862017, 21067968, 9983680, 29496102
OFFSET
1,1
LINKS
Michael S. Branicky, Table of n, a(n) for n = 1..49
FORMULA
a(n) >= A369351(n).
PROG
(Python)
from sympy import factorint
from functools import cache
from itertools import count, islice
from collections import Counter
kcount, kmax = Counter(), 0
@cache
def sopfr(n): return sum(p*e for p, e in factorint(n).items())
def f(n): # revised based on comment by David A. Corneth in A369351
global kcount, kmax
target = n - sopfr(n)
for k in range(kmax+1, target+1):
kcount[k+sopfr(k)] += 1
kmax += 1
return kcount[target]
def agen(): # generator of terms
adict, n = dict(), 1
for m in count(2):
v = f(m)
if v not in adict: adict[v] = m
while n in adict: yield adict[n]; n += 1
print(list(islice(agen(), 12)))
CROSSREFS
Sequence in context: A198327 A009583 A369351 * A033578 A101077 A094952
KEYWORD
nonn
AUTHOR
Michael S. Branicky, Feb 09 2024
EXTENSIONS
More terms from David A. Corneth, Feb 11 2024
STATUS
approved