login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A370091
The smallest number such that exactly n numbers k exist such that a(n) - k = sopfr(a(n)) + sopfr(k), where sopfr(m) is the sum of the primes dividing m, with repetition.
3
6, 35, 77, 169, 287, 1147, 2623, 1517, 7739, 17792, 4352, 14647, 71107, 55488, 114091, 121673, 167137, 206837, 333797, 762079, 554484, 909157, 277928, 722473, 2165407, 3249569, 4328483, 2498227, 5271391, 5770603, 9178891, 8321771, 15732791, 16862017, 21067968, 9983680, 29496102
OFFSET
1,1
LINKS
Michael S. Branicky, Table of n, a(n) for n = 1..49
FORMULA
a(n) >= A369351(n).
PROG
(Python)
from sympy import factorint
from functools import cache
from itertools import count, islice
from collections import Counter
kcount, kmax = Counter(), 0
@cache
def sopfr(n): return sum(p*e for p, e in factorint(n).items())
def f(n): # revised based on comment by David A. Corneth in A369351
global kcount, kmax
target = n - sopfr(n)
for k in range(kmax+1, target+1):
kcount[k+sopfr(k)] += 1
kmax += 1
return kcount[target]
def agen(): # generator of terms
adict, n = dict(), 1
for m in count(2):
v = f(m)
if v not in adict: adict[v] = m
while n in adict: yield adict[n]; n += 1
print(list(islice(agen(), 12)))
CROSSREFS
Sequence in context: A198327 A009583 A369351 * A033578 A101077 A094952
KEYWORD
nonn
AUTHOR
Michael S. Branicky, Feb 09 2024
EXTENSIONS
More terms from David A. Corneth, Feb 11 2024
STATUS
approved