login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A269947
Triangle read by rows, Stirling cycle numbers of order 3, T(n,n) = 1, T(n,k) = 0 if k<0 or k>n, otherwise T(n,k) = T(n-1,k-1)+(n-1)^3*T(n-1,k), for n>=0 and 0<=k<=n.
3
1, 0, 1, 0, 1, 1, 0, 8, 9, 1, 0, 216, 251, 36, 1, 0, 13824, 16280, 2555, 100, 1, 0, 1728000, 2048824, 335655, 15055, 225, 1, 0, 373248000, 444273984, 74550304, 3587535, 63655, 441, 1, 0, 128024064000, 152759224512, 26015028256, 1305074809, 25421200, 214918, 784, 1
OFFSET
0,8
FORMULA
T(n,1) = ((n-1)!)^3 for n>=1 (cf. A000442).
T(n,n-1) = (n*(n-1)/2)^2 for n>=1 (cf. A000537).
Row sums: Product_{k=1..n} ((k-1)^3+1) for n>=0 (cf. A255433).
EXAMPLE
Triangle starts:
1,
0, 1,
0, 1, 1,
0, 8, 9, 1,
0, 216, 251, 36, 1,
0, 13824, 16280, 2555, 100, 1,
0, 1728000, 2048824, 335655, 15055, 225, 1.
MAPLE
T := proc(n, k) option remember;
`if`(n=k, 1,
`if`(k<0 or k>n, 0,
T(n-1, k-1) + (n-1)^3*T(n-1, k))) end:
for n from 0 to 6 do seq(T(n, k), k=0..n) od;
MATHEMATICA
T[n_, k_] := T[n, k] = Which[n == k, 1, k < 0 || k > n, 0, True, T[n - 1, k - 1] + (n - 1)^3 T[n - 1, k]];
Table[T[n, k], {n, 0, 8}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jul 12 2019 *)
CROSSREFS
Variant: A249677.
Cf. A007318 (order 0), A132393 (order 1), A269944 (order 2).
Sequence in context: A370093 A019872 A011421 * A178839 A376961 A367732
KEYWORD
nonn,tabl
AUTHOR
Peter Luschny, Mar 22 2016
STATUS
approved