login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A255433
a(n) = Product_{k=0..n} (k^3+1).
11
1, 2, 18, 504, 32760, 4127760, 895723920, 308129028480, 158070191610240, 115391239875475200, 115506631115350675200, 153854832645647099366400, 266015005644323834804505600, 584700982406223788900303308800, 1605004196705084300531332582656000
OFFSET
0,2
LINKS
Erhan Gürela, Ali Ulas Özgür Kisisel, A note on the products (1^mu + 1)(2^mu + 1)···(n^mu + 1), Journal of Number Theory, Volume 130, Issue 1, January 2010, Pages 187-191.
Chuan Ze Niu, (1^3+1)(2^3+1)...(n^3+1) is not a cube, arXiv:1612.08158 [math.NT], 2016.
FORMULA
a(n) ~ 2*sqrt(2*Pi) * cosh(sqrt(3)*Pi/2) * n^(3*n + 3/2) / exp(3*n).
a(n) = 2*A158621(n). - Vaclav Kotesovec, Jul 11 2015
MATHEMATICA
Table[Product[k^3 + 1, {k, 0, n}], {n, 0, 20}]
FullSimplify[Table[(Cosh[Sqrt[3]*Pi/2] * Gamma[2+n] * Gamma[1/2 - I*Sqrt[3]/2 + n] * Gamma[1/2 + I*Sqrt[3]/2 + n])/Pi, {n, 0, 20}]]
FoldList[Times, Range[0, 20]^3+1] (* Harvey P. Dale, Jul 07 2017 *)
PROG
(PARI) a(n) = prod(k=1, n, 1+k^3); \\ Michel Marcus, Jan 25 2016
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Vaclav Kotesovec, Feb 23 2015
STATUS
approved