login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = Product_{k=0..n} (k^3+1).
11

%I #23 Jul 07 2017 13:27:47

%S 1,2,18,504,32760,4127760,895723920,308129028480,158070191610240,

%T 115391239875475200,115506631115350675200,153854832645647099366400,

%U 266015005644323834804505600,584700982406223788900303308800,1605004196705084300531332582656000

%N a(n) = Product_{k=0..n} (k^3+1).

%H G. C. Greubel, <a href="/A255433/b255433.txt">Table of n, a(n) for n = 0..150</a>

%H Erhan Gürela, Ali Ulas Özgür Kisisel, <a href="http://dx.doi.org/10.1016/j.jnt.2009.07.014">A note on the products (1^mu + 1)(2^mu + 1)···(n^mu + 1)</a>, Journal of Number Theory, Volume 130, Issue 1, January 2010, Pages 187-191.

%H Chuan Ze Niu, <a href="https://arxiv.org/abs/1612.08158">(1^3+1)(2^3+1)...(n^3+1) is not a cube</a>, arXiv:1612.08158 [math.NT], 2016.

%F a(n) ~ 2*sqrt(2*Pi) * cosh(sqrt(3)*Pi/2) * n^(3*n + 3/2) / exp(3*n).

%F a(n) = 2*A158621(n). - _Vaclav Kotesovec_, Jul 11 2015

%t Table[Product[k^3 + 1, {k, 0, n}], {n, 0, 20}]

%t FullSimplify[Table[(Cosh[Sqrt[3]*Pi/2] * Gamma[2+n] * Gamma[1/2 - I*Sqrt[3]/2 + n] * Gamma[1/2 + I*Sqrt[3]/2 + n])/Pi, {n, 0, 20}]]

%t FoldList[Times,Range[0,20]^3+1] (* _Harvey P. Dale_, Jul 07 2017 *)

%o (PARI) a(n) = prod(k=1, n, 1+k^3); \\ _Michel Marcus_, Jan 25 2016

%Y Cf. A101686, A158621, A255434, A255435.

%K nonn,easy

%O 0,2

%A _Vaclav Kotesovec_, Feb 23 2015