Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #12 Jul 12 2019 15:42:19
%S 1,0,1,0,1,1,0,8,9,1,0,216,251,36,1,0,13824,16280,2555,100,1,0,
%T 1728000,2048824,335655,15055,225,1,0,373248000,444273984,74550304,
%U 3587535,63655,441,1,0,128024064000,152759224512,26015028256,1305074809,25421200,214918,784,1
%N Triangle read by rows, Stirling cycle numbers of order 3, T(n,n) = 1, T(n,k) = 0 if k<0 or k>n, otherwise T(n,k) = T(n-1,k-1)+(n-1)^3*T(n-1,k), for n>=0 and 0<=k<=n.
%H Peter Luschny, <a href="http://oeis.org/wiki/User:Peter_Luschny/P-Transform">The P-transform</a>.
%F T(n,1) = ((n-1)!)^3 for n>=1 (cf. A000442).
%F T(n,n-1) = (n*(n-1)/2)^2 for n>=1 (cf. A000537).
%F Row sums: Product_{k=1..n} ((k-1)^3+1) for n>=0 (cf. A255433).
%e Triangle starts:
%e 1,
%e 0, 1,
%e 0, 1, 1,
%e 0, 8, 9, 1,
%e 0, 216, 251, 36, 1,
%e 0, 13824, 16280, 2555, 100, 1,
%e 0, 1728000, 2048824, 335655, 15055, 225, 1.
%p T := proc(n, k) option remember;
%p `if`(n=k, 1,
%p `if`(k<0 or k>n, 0,
%p T(n-1, k-1) + (n-1)^3*T(n-1, k))) end:
%p for n from 0 to 6 do seq(T(n,k), k=0..n) od;
%t T[n_, k_] := T[n, k] = Which[n == k, 1, k < 0 || k > n, 0, True, T[n - 1, k - 1] + (n - 1)^3 T[n - 1, k]];
%t Table[T[n, k], {n, 0, 8}, {k, 0, n}] // Flatten (* _Jean-François Alcover_, Jul 12 2019 *)
%Y Variant: A249677.
%Y Cf. A007318 (order 0), A132393 (order 1), A269944 (order 2).
%Y Cf. A000442, A000537, A255433.
%K nonn,tabl
%O 0,8
%A _Peter Luschny_, Mar 22 2016