login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A167775
Subsequence of A167708 whose indices are congruent to 1 mod 5, i.e., a(n) = A167708(5n+1).
7
10, 2441, 829930, 282173759, 95938248130, 32618722190441, 11090269606501810, 3770659047488424959, 1282012985876457984250, 435880644538948226220041, 148198137130256520456829690, 50386930743642678007095874559, 17131408254701380265892140520370
OFFSET
0,1
FORMULA
a(n+2) = 340*a(n+1) - a(n).
a(n+1) = 170*a(n) + 39*sqrt(19*a(n)^2 - 1539).
G.f.: (10 + 2441*z - 10*z*340)/(1 - 340*z + z^2).
a(n) = ((10 + sqrt(19))/2)*(170 + 39*sqrt(19))^(n) + ((10 - sqrt(19))/2)* (170 - 39*sqrt(19))^(n).
EXAMPLE
a(0) = A167708(1) = 10, a(1) = A167708(6) = 2441, ...
MAPLE
u(0):=10:u(1):=2441:for n from 0 to 20 do u(n+2):=340*u(n+1)-u(n):od:seq(u(n), n=0..20); taylor(((10+2441*z-10*z*340)/(1-340*z+z^2)), z=0, 20);
MATHEMATICA
LinearRecurrence[{340, -1}, {10, 2441}, 50] (* G. C. Greubel, Jun 23 2016 *)
PROG
(Magma) I:=[10, 2441]; [n le 2 select I[n] else 340*Self(n-1)-Self(n-2): n in [1..20]]; // Vincenzo Librandi, Jun 24 2016
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Richard Choulet, Nov 11 2009
STATUS
approved