login
A158412
961n - 1.
2
960, 1921, 2882, 3843, 4804, 5765, 6726, 7687, 8648, 9609, 10570, 11531, 12492, 13453, 14414, 15375, 16336, 17297, 18258, 19219, 20180, 21141, 22102, 23063, 24024, 24985, 25946, 26907, 27868, 28829, 29790, 30751, 31712, 32673, 33634
OFFSET
1,1
COMMENTS
The identity (961*n-1)^2-(961*n^2-2*n)*(31)^2=1 can be written as a(n)^2-A158410(n)*(31)^2=1.
LINKS
Vincenzo Librandi, X^2-AY^2=1
E. J. Barbeau, Polynomial Excursions, Chapter 10: Diophantine equations (2010), pages 84-85 (row 15 in the first table at p. 85, case d(t) = t*(31^2*t-2)).
FORMULA
a(n) = 2*a(n-1)-a(n-2).
G.f.: x*(960+x)/(1-x)^2.
MATHEMATICA
LinearRecurrence[{2, -1}, {960, 1921}, 50]
PROG
(Magma) I:=[960, 1921]; [n le 2 select I[n] else 2*Self(n-1)-Self(n-2): n in [1..50]];
(PARI) a(n) = 961*n - 1.
CROSSREFS
Cf. A158410.
Sequence in context: A137491 A179672 A348523 * A247723 A330496 A057666
KEYWORD
nonn,easy
AUTHOR
Vincenzo Librandi, Mar 18 2009
STATUS
approved