Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #16 Apr 25 2020 15:05:20
%S 0,0,0,2,9,30,88,240,624,1568,3840,9216,21760,50688,116736,266240,
%T 602112,1351680,3014656,6684672,14745600,32374784,70778880,154140672,
%U 334495744,723517440,1560281088,3355443200,7197425664,15401484288,32883343360
%N Expansion of (x^3*(3*x - 2))/(2*x - 1)^3.
%C a(n) is the number of North-East lattice paths from (0,0) to (n,n) that have two east steps below y = x - 1 and no east steps above y = x+1. Details can be found in Section 4.1 in Pan and Remmel's link.
%H Colin Barker, <a href="/A268586/b268586.txt">Table of n, a(n) for n = 0..1000</a>
%H Ran Pan, Jeffrey B. Remmel, <a href="http://arxiv.org/abs/1601.07988">Paired patterns in lattice paths</a>, arXiv:1601.07988 [math.CO], 2016.
%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (6,-12,8).
%F G.f.: (x^3*(3*x - 2))/(2*x - 1)^3.
%F From _Colin Barker_, Feb 08 2016: (Start)
%F a(n) = 2^(n-5)*(n-2)*(n+5) for n>1.
%F a(n) = 6*a(n-1)-12*a(n-2)+8*a(n-3) for n>4.
%F (End)
%t CoefficientList[Series[(x^3 (3 x - 2))/(2 x - 1)^3, {x, 0, 30}], x] (* _Michael De Vlieger_, Feb 08 2016 *)
%t LinearRecurrence[{6,-12,8},{0,0,0,2,9},40] (* _Harvey P. Dale_, Apr 25 2020 *)
%o (PARI) concat(vector(3), Vec(x^3*(2-3*x)/(1-2*x)^3 + O(x^100))) \\ _Colin Barker_, Feb 08 2016
%K nonn,easy
%O 0,4
%A _Ran Pan_, Feb 07 2016