%I #12 Aug 12 2017 13:08:26
%S 5,60,515,3800,25749,165070,1018135,6103350,35797125,206363748,
%T 1173148275,6592732750,36692520865,202542849720,1110149980567,
%U 6047465281420,32765782091385,176683116394850,948690479365355,5074595254876020,27051397095965605,143757461666945890
%N Total number of distinct Lyndon factors appearing in all words of length n over an alphabet of size 5.
%H Lars Blomberg, <a href="/A290747/b290747.txt">Table of n, a(n) for n = 1..100</a>
%H Amy Glen, Jamie Simpson, W. F. Smyth, <a href="http://www.combinatorics.org/ojs/index.php/eljc/article/view/v24i3p28">Counting Lyndon Factors</a>, Electronic Journal of Combinatorics 24(3) (2017), #P3.28.
%o (PARI) Inner(m,s)=d=divisors(m);sum(i=1,length(d),moebius(m/d[i])*s^d[i]);
%o Lyndon(s,n) = sum(m=1,n, (n-m+1)/m * s^(n-m) * Inner(m,s));
%o vector(100,i,Lyndon(5,i)) \\ _Lars Blomberg_, Aug 12 2017
%K nonn
%O 1,1
%A _N. J. A. Sloane_, Aug 11 2017
%E a(11)-a(22) from _Lars Blomberg_, Aug 12 2017