|
|
A056766
|
|
Smallest term of A056757 (numbers for which the cube of the number of divisors exceeds the number) between 2^(n-1) and 2^n.
|
|
0
|
|
|
2, 3, 5, 9, 18, 33, 66, 130, 258, 516, 1026, 2052, 4100, 8200, 16400, 32800, 65550, 131100, 262200, 524400, 1048800, 2097600, 4195200, 8390400, 16783200, 33566400, 67132800, 134265600, 268606800, 537213600, 1074427200, 2148854400
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
LINKS
|
Table of n, a(n) for n=1..32.
|
|
FORMULA
|
Smallest k so that 2^(n-1) < k <= 2^n and A000005(k)^3 > k.
|
|
EXAMPLE
|
For n=7, 64 < a(7) = 66 < 128, A000005(66)^3 = 8^3 = 512 > 66, and no other such number occurs between 64 and 66.
For n=31, a(31) = 1074427200, 2^30 < a(31) < 2^31; a(31) has 1344 divisors and 1344^3 = 2427715584 > 1074427200. Between 2^30 and a(31) no other numbers occur with this property.
|
|
CROSSREFS
|
Cf. A000005, A035033, A035034, A035035, A034884, A029837, A056757-A056767.
Sequence in context: A047021 A201359 A047031 * A262450 A208986 A080091
Adjacent sequences: A056763 A056764 A056765 * A056767 A056768 A056769
|
|
KEYWORD
|
fini,nonn
|
|
AUTHOR
|
Labos Elemer, Aug 16 2000
|
|
STATUS
|
approved
|
|
|
|