login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A316153
Heinz numbers of integer partitions of prime numbers into a prime number of prime parts.
2
15, 33, 45, 93, 153, 177, 275, 327, 369, 405, 425, 537, 603, 605, 775, 831, 891, 1025, 1059, 1125, 1413, 1445, 1475, 1641, 1705, 1719, 1761, 2057, 2075, 2319, 2511, 2577, 2979, 3175, 3179, 3189, 3459, 3485, 3603, 3609, 3825, 3925, 4299, 4475, 4497, 4565, 4581
OFFSET
1,1
COMMENTS
The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).
EXAMPLE
Sequence of integer partitions of prime numbers into a prime number of prime parts, preceded by their Heinz numbers, begins:
15: (3,2)
33: (5,2)
45: (3,2,2)
93: (11,2)
153: (7,2,2)
177: (17,2)
275: (5,3,3)
327: (29,2)
369: (13,2,2)
405: (3,2,2,2,2)
425: (7,3,3)
537: (41,2)
603: (19,2,2)
605: (5,5,3)
775: (11,3,3)
831: (59,2)
891: (5,2,2,2,2)
MATHEMATICA
primeMS[n_]:=If[n==1, {}, Flatten[Cases[FactorInteger[n], {p_, k_}:>Table[PrimePi[p], {k}]]]];
Select[Range[1000], And[PrimeQ[PrimeOmega[#]], PrimeQ[Total[primeMS[#]]], And@@PrimeQ/@primeMS[#]]&]
KEYWORD
nonn
AUTHOR
Gus Wiseman, Jun 25 2018
STATUS
approved