login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A319091
Decimal expansion of D, the coefficient of n in the asymptotic formula of Ramanujan for Sum_{k=1..n} (d(k)^2), where d(k) is the number of distinct divisors of k.
3
4, 6, 0, 3, 2, 3, 3, 7, 2, 2, 5, 8, 7, 2, 1, 4, 3, 0, 3, 9, 3, 7, 6, 2, 0, 8, 6, 3, 8, 4, 4, 1, 8, 9, 7, 4, 7, 6, 3, 2, 1, 4, 9, 0, 3, 5, 3, 8, 7, 3, 9, 2, 2, 4, 0, 5, 8, 4, 2, 5, 0, 3, 4, 8, 4, 4, 5, 9, 0, 2, 6, 2, 9, 3, 2, 4, 0, 3, 2, 0, 7, 3, 8, 0, 1, 9, 8, 4, 8, 1, 0, 7, 6, 5, 9, 8, 5, 9, 9, 7, 3, 5, 6, 9, 5, 8
OFFSET
0,1
LINKS
Ramanujan's Papers, Some formulas in the analytic theory of numbers Messenger of Mathematics, XLV, 1916, 81-84, Formula (3).
FORMULA
D = 24*gamma^3/Pi^2 - (432*z1 /Pi^4+ 36/Pi^2)*gamma^2 + (3456*z1^2/Pi^6 + 288*(z1-z2)/Pi^4 + 24/Pi^2 - 72*g1/Pi^2)*gamma + g1*(288*z1/Pi^4 + 24/Pi^2)-10368*z1^3/Pi^8 - 864*z1^2/Pi^6 + 1728*z2*z1/Pi^6 + 72*(z2-z1)/Pi^4- 48*z3/Pi^4 + (12*g2-6)/Pi^2, where gamma is the Euler-Mascheroni constant A001620, z1 = Zeta'(2) = A073002, z2 = Zeta''(2) = A201994, z3 = Zeta'''(2) = A201995 and g1, g2 are the Stieltjes constants, see A082633 and A086279.
EXAMPLE
0.4603233722587214303937620863844189747632149035387392240584250348445902629324...
MATHEMATICA
24*EulerGamma^3/Pi^2 - (432*Zeta'[2] /Pi^4+ 36/Pi^2)*EulerGamma^2 + (3456*Zeta'[2]^2/Pi^6 + 288*(Zeta'[2]-Zeta''[2])/Pi^4 + 24/Pi^2 - 72*StieltjesGamma[1]/Pi^2)*EulerGamma + StieltjesGamma[1]*(288*Zeta'[2]/Pi^4 + 24/Pi^2)-10368*Zeta'[2]^3/Pi^8 - 864*Zeta'[2]^2/Pi^6 + 1728*Zeta''[2] * Zeta'[2]/Pi^6 + 72*(Zeta''[2]-Zeta'[2])/Pi^4 - 48*Zeta'''[2]/Pi^4 + (12*StieltjesGamma[2] - 6)/Pi^2
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
Vaclav Kotesovec, Sep 10 2018
STATUS
approved