The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Please make a donation to keep the OEIS running. We are now in our 56th year. In the past year we added 10000 new sequences and reached almost 9000 citations (which often say "discovered thanks to the OEIS"). Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A319091 Decimal expansion of D, the coefficient of n in the asymptotic formula of Ramanujan for Sum_{k=1..n} (d(k)^2), where d(k) is the number of distinct divisors of k. 3
 4, 6, 0, 3, 2, 3, 3, 7, 2, 2, 5, 8, 7, 2, 1, 4, 3, 0, 3, 9, 3, 7, 6, 2, 0, 8, 6, 3, 8, 4, 4, 1, 8, 9, 7, 4, 7, 6, 3, 2, 1, 4, 9, 0, 3, 5, 3, 8, 7, 3, 9, 2, 2, 4, 0, 5, 8, 4, 2, 5, 0, 3, 4, 8, 4, 4, 5, 9, 0, 2, 6, 2, 9, 3, 2, 4, 0, 3, 2, 0, 7, 3, 8, 0, 1, 9, 8, 4, 8, 1, 0, 7, 6, 5, 9, 8, 5, 9, 9, 7, 3, 5, 6, 9, 5, 8 (list; constant; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 LINKS Ramanujan's Papers, Some formulas in the analytic theory of numbers Messenger of Mathematics, XLV, 1916, 81-84, Formula (3). FORMULA D = 24*gamma^3/Pi^2 - (432*z1 /Pi^4+ 36/Pi^2)*gamma^2 + (3456*z1^2/Pi^6 + 288*(z1-z2)/Pi^4 + 24/Pi^2 - 72*g1/Pi^2)*gamma + g1*(288*z1/Pi^4 + 24/Pi^2)-10368*z1^3/Pi^8 - 864*z1^2/Pi^6 + 1728*z2*z1/Pi^6 + 72*(z2-z1)/Pi^4- 48*z3/Pi^4 + (12*g2-6)/Pi^2, where gamma is the Euler-Mascheroni constant A001620, z1 = Zeta'(2) = A073002, z2 = Zeta''(2) = A201994, z3 = Zeta'''(2) = A201995 and g1, g2 are the Stieltjes constants, see A082633 and A086279. EXAMPLE 0.4603233722587214303937620863844189747632149035387392240584250348445902629324... MATHEMATICA 24*EulerGamma^3/Pi^2 - (432*Zeta'[2] /Pi^4+ 36/Pi^2)*EulerGamma^2 + (3456*Zeta'[2]^2/Pi^6 + 288*(Zeta'[2]-Zeta''[2])/Pi^4 + 24/Pi^2 - 72*StieltjesGamma[1]/Pi^2)*EulerGamma + StieltjesGamma[1]*(288*Zeta'[2]/Pi^4 + 24/Pi^2)-10368*Zeta'[2]^3/Pi^8 - 864*Zeta'[2]^2/Pi^6 + 1728*Zeta''[2] * Zeta'[2]/Pi^6 + 72*(Zeta''[2]-Zeta'[2])/Pi^4 - 48*Zeta'''[2]/Pi^4 + (12*StieltjesGamma[2] - 6)/Pi^2 CROSSREFS Cf. A061502, A092742, A245074, A319090. Sequence in context: A204017 A021960 A096256 * A328227 A059750 A243983 Adjacent sequences:  A319088 A319089 A319090 * A319092 A319093 A319094 KEYWORD nonn,cons AUTHOR Vaclav Kotesovec, Sep 10 2018 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 2 17:50 EST 2020. Contains 338877 sequences. (Running on oeis4.)