login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A089917 a(n) = 6^n *n! *L_n^{-1/6}(-1), where L_n^(alpha)(x) are generalized Laguerre polynomials. 1
1, 11, 223, 6353, 230353, 10083971, 515554831, 30085247513, 1970313094753, 142951182749243, 11372154669976831, 983705074834644641, 91883282167153578673, 9213208393354101289523, 986754808994210521840303 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..340

FORMULA

E.g.f.: exp(6*x/(1-6*x))/(1-6*x)^(5/6). - Vladeta Jovovic, Nov 17 2003

a(n) ~ n^(n+1/6)*2^(n-1/2)*3^n*exp(-n+2*sqrt(n)-1/2) * (1 + 5/(9*sqrt(n))). - Vaclav Kotesovec, Jun 24 2013

a(n) = (12*n -1)*a(n-1) - (n-1)*(36*n - 42)*a(n-2). - G. C. Greubel, May 13 2018

MAPLE

A089917 := proc(n)

        6^n*n!*LaguerreL(n, -1/6, -1) ;

        simplify(%) ;

end proc:

seq(A089917(n), n=0..10) ; # R. J. Mathar, Nov 12 2011

MATHEMATICA

Table[6^n*n!*LaguerreL[n, -1/6, -1], {n, 0, 20}] (* Vaclav Kotesovec, Jun 24 2013 *)

PROG

(PARI) x='x+O('x^30); Vec(serlaplace(1/(1 - 6*x)^(5/6)*exp(6*x/(1 - 6*x)))) \\ G. C. Greubel, May 13 2018

(MAGMA) m:=25; R<x>:=PowerSeriesRing(Rationals(), m); b:=Coefficients( R!(1/(1 - 6*x)^(5/6)*Exp(6*x/(1 - 6*x)))); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, May 13 2018

CROSSREFS

Sequence in context: A103611 A142541 A295542 * A294388 A281257 A187646

Adjacent sequences:  A089914 A089915 A089916 * A089918 A089919 A089920

KEYWORD

nonn

AUTHOR

Karol A. Penson, Nov 14 2003

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 15 13:38 EDT 2019. Contains 328030 sequences. (Running on oeis4.)