login
A187648
Partial sums of the (signless) central Stirling numbers of the first kind.
1
1, 2, 13, 238, 7007, 276332, 13615867, 804559020, 55435688573, 4363540990502, 386285596492697, 37986820683352442, 4108370877690921963, 484652929620424467088, 61930188031979540102743, 8521504634108297687933368
OFFSET
0,2
LINKS
FORMULA
a(n) = Sum_{k=0..n} A132393(2*k,k).
a(n) ~ n^n * c^(2*n) * 2^(3*n-1) / (sqrt(Pi*(c-1)*n) * exp(n) * (2*c-1)^n), where c = -LambertW(-1,-exp(-1/2)/2). - Vaclav Kotesovec, May 21 2014
MAPLE
seq(add(abs(combinat[stirling1](2*k, k)), k=0..n), n=0..15);
MATHEMATICA
Flatten[Table[Sum[Abs[StirlingS1[2k, k]], {k, 0, n}], {n, 0, 15}], 1]
PROG
(Maxima) makelist(sum(abs(stirling1(2*k, k)), k, 0, n), n, 0, 12);
CROSSREFS
Cf. A132393.
Sequence in context: A268703 A373871 A369799 * A113098 A365590 A135870
KEYWORD
nonn,easy
AUTHOR
Emanuele Munarini, Mar 12 2011
STATUS
approved