login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A187648
Partial sums of the (signless) central Stirling numbers of the first kind.
1
1, 2, 13, 238, 7007, 276332, 13615867, 804559020, 55435688573, 4363540990502, 386285596492697, 37986820683352442, 4108370877690921963, 484652929620424467088, 61930188031979540102743, 8521504634108297687933368
OFFSET
0,2
LINKS
FORMULA
a(n) = Sum_{k=0..n} A132393(2*k,k).
a(n) ~ n^n * c^(2*n) * 2^(3*n-1) / (sqrt(Pi*(c-1)*n) * exp(n) * (2*c-1)^n), where c = -LambertW(-1,-exp(-1/2)/2). - Vaclav Kotesovec, May 21 2014
MAPLE
seq(add(abs(combinat[stirling1](2*k, k)), k=0..n), n=0..15);
MATHEMATICA
Flatten[Table[Sum[Abs[StirlingS1[2k, k]], {k, 0, n}], {n, 0, 15}], 1]
PROG
(Maxima) makelist(sum(abs(stirling1(2*k, k)), k, 0, n), n, 0, 12);
CROSSREFS
Cf. A132393.
Sequence in context: A268703 A373871 A369799 * A113098 A365590 A135870
KEYWORD
nonn,easy
AUTHOR
Emanuele Munarini, Mar 12 2011
STATUS
approved