login
A187651
Alternated binomial partial sums of the central Stirling numbers of the second kind.
0
1, 0, 6, 71, 1380, 34854, 1092317, 40900215, 1781924888, 88569337730, 4946558473226, 306691008191732, 20903038895529727, 1553426761730508586, 125016067017985968931, 10831572432055401760624, 1005245087722396707881648
OFFSET
0,3
FORMULA
a(n) = Sum_{k=0..n} (-1)^(n-k)*binomial(n,k)*S(2*k,k).
a(n) ~ c * d^n * (n-1)!, where d = 4/(w*(2-w)) = 6.176554609483480358231680164... and c = exp(w^2/4 - 1) / (Pi * sqrt(2*w * (1-w))) = 0.17569156962762991098958896633434384684339835018075095823375851..., where w = -LambertW(-2*exp(-2))^2 = -A226775. - Vaclav Kotesovec, Mar 30 2018, updated Jul 07 2021
MAPLE
seq(add((-1)^(n-k)*binomial(n, k)*combinat[stirling2](2*k, k), k=0..n), n=0..20);
MATHEMATICA
Table[Sum[(-1)^(n-k)Binomial[n, k] StirlingS2[2k, k], {k, 0, n}], {n, 0, 16}]
PROG
(Maxima) makelist(sum((-1)^(n-k) *binomial(n, k) *stirling2(2*k, k), k, 0, n), n, 0, 12);
CROSSREFS
Cf. A187653.
Sequence in context: A145089 A218676 A127135 * A357141 A005981 A024272
KEYWORD
nonn,easy
AUTHOR
Emanuele Munarini, Mar 12 2011
STATUS
approved