login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A187653
Binomial cumulative sums of the central Stirling numbers of the second kind (A007820).
2
1, 2, 10, 115, 2108, 52006, 1606229, 59550709, 2575966264, 127343893378, 7081926869746, 437585883729512, 29740614295527535, 2205002457135885616, 177099066222770055407, 15317784128757306540986, 1419476705128570400447376
OFFSET
0,2
LINKS
FORMULA
a(n) = Sum_{k=0..n} binomial(n,k)*S(2*k,k).
a(n) ~ exp(c*(2-c)/4) * StirlingS2(2*n,n) ~ 2^(2*n-1/2)*n^(n-1/2)/(sqrt(Pi*(1-c))*exp(n-c*(2-c)/4)*(c*(2-c))^n), where c = - LambertW(-2/exp(2)) = 0.406375739959959907676958... - Vaclav Kotesovec, Jan 02 2013
O.g.f.: Sum_{n>=0} n^(2*n)/n! * x^n/(1-x)^(n+1) * exp(-n^2*x/(1-x)). - Paul D. Hanna, Jan 02 2013
MAPLE
seq(sum(binomial(n, k)*combinat[stirling2](2*k, k), k=0..n), n=0..12);
MATHEMATICA
Table[Sum[Binomial[n, k]StirlingS2[2k, k], {k, 0, n}], {n, 0, 16}]
PROG
(Maxima) makelist(sum(binomial(n, k)*stirling2(2*k, k), k, 0, n), n, 0, 12);
(PARI) a(n)=polcoeff(sum(m=0, n, m^(2*m)/m!*x^m/(1-x)^(m+1)*exp(-m^2*x/(1-x+x*O(x^n)))), n)
for(n=0, 20, print1(a(n), ", ")) \\ Paul D. Hanna, Jan 02 2013
CROSSREFS
Cf. A007820.
Sequence in context: A113089 A054928 A132522 * A131811 A261496 A347014
KEYWORD
nonn,easy
AUTHOR
Emanuele Munarini, Mar 12 2011
STATUS
approved