login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Binomial cumulative sums of the central Stirling numbers of the second kind (A007820).
2

%I #20 Oct 19 2024 08:33:23

%S 1,2,10,115,2108,52006,1606229,59550709,2575966264,127343893378,

%T 7081926869746,437585883729512,29740614295527535,2205002457135885616,

%U 177099066222770055407,15317784128757306540986,1419476705128570400447376

%N Binomial cumulative sums of the central Stirling numbers of the second kind (A007820).

%H Vincenzo Librandi, <a href="/A187653/b187653.txt">Table of n, a(n) for n = 0..100</a>

%F a(n) = Sum_{k=0..n} binomial(n,k)*S(2*k,k).

%F a(n) ~ exp(c*(2-c)/4) * StirlingS2(2*n,n) ~ 2^(2*n-1/2)*n^(n-1/2)/(sqrt(Pi*(1-c))*exp(n-c*(2-c)/4)*(c*(2-c))^n), where c = - LambertW(-2/exp(2)) = 0.406375739959959907676958... - _Vaclav Kotesovec_, Jan 02 2013

%F O.g.f.: Sum_{n>=0} n^(2*n)/n! * x^n/(1-x)^(n+1) * exp(-n^2*x/(1-x)). - _Paul D. Hanna_, Jan 02 2013

%p seq(sum(binomial(n,k)*combinat[stirling2](2*k,k),k=0..n),n=0..12);

%t Table[Sum[Binomial[n, k]StirlingS2[2k, k], {k, 0, n}], {n, 0, 16}]

%o (Maxima) makelist(sum(binomial(n,k)*stirling2(2*k,k),k,0,n),n,0,12);

%o (PARI) a(n)=polcoeff(sum(m=0,n,m^(2*m)/m!*x^m/(1-x)^(m+1)*exp(-m^2*x/(1-x+x*O(x^n)))),n)

%o for(n=0,20,print1(a(n),", ")) \\ _Paul D. Hanna_, Jan 02 2013

%Y Cf. A007820.

%K nonn,easy

%O 0,2

%A _Emanuele Munarini_, Mar 12 2011