login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A187652
Alternated binomial cumulative sums of the (signless) central Stirling numbers of the first kind (A187646).
0
1, 0, 10, 194, 5932, 237624, 11820780, 702992968, 48662470640, 3843811669088, 341207224961856, 33627579102171680, 3643463136559851440, 430456189350273371648, 55075003474909952394848, 7586546772496980353804704
OFFSET
0,3
FORMULA
a(n) = Sum_{k=0..n} (-1)^(n-k)*binomial(n,k)*s(2*k,k).
a(n) ~ c * d^n * (n-1)!, where d = 8*w^2/(2*w-1), where w = -LambertW(-1,-exp(-1/2)/2) = 1.7564312086261696769827376166... and c = 0.11686978539934159049334861225275481804523808136863346883911376048... - Vaclav Kotesovec, Jul 05 2021
MAPLE
seq(sum((-1)^(n-k)*binomial(n, k)*abs(combinat[stirling1](2*k, k)), k=0..n), n=0..12);
MATHEMATICA
Table[Sum[(-1)^(n - k)Binomial[n, k]Abs[StirlingS1[2k, k]], {k, 0, n}], {n, 0, 15}]
PROG
(Maxima) makelist(sum((-1)^(n-k)*binomial(n, k)*abs(stirling1(2*k, k)), k, 0, n), n, 0, 12);
CROSSREFS
Cf. A187646.
Sequence in context: A006436 A252974 A341503 * A361311 A007816 A365176
KEYWORD
nonn,easy
AUTHOR
Emanuele Munarini, Mar 12 2011
STATUS
approved