login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Partial sums of the (signless) central Stirling numbers of the first kind.
1

%I #15 May 27 2017 19:50:29

%S 1,2,13,238,7007,276332,13615867,804559020,55435688573,4363540990502,

%T 386285596492697,37986820683352442,4108370877690921963,

%U 484652929620424467088,61930188031979540102743,8521504634108297687933368

%N Partial sums of the (signless) central Stirling numbers of the first kind.

%H G. C. Greubel, <a href="/A187648/b187648.txt">Table of n, a(n) for n = 0..250</a>

%F a(n) = Sum_{k=0..n} A132393(2*k,k).

%F a(n) ~ n^n * c^(2*n) * 2^(3*n-1) / (sqrt(Pi*(c-1)*n) * exp(n) * (2*c-1)^n), where c = -LambertW(-1,-exp(-1/2)/2). - _Vaclav Kotesovec_, May 21 2014

%p seq(add(abs(combinat[stirling1](2*k, k)), k=0..n), n=0..15);

%t Flatten[Table[Sum[Abs[StirlingS1[2k, k]], {k, 0, n}], {n, 0, 15}],1]

%o (Maxima) makelist(sum(abs(stirling1(2*k,k)), k,0,n), n,0,12);

%Y Cf. A132393.

%K nonn,easy

%O 0,2

%A _Emanuele Munarini_, Mar 12 2011