login
A295987
Number T(n,k) of permutations of [n] with exactly k (possibly overlapping) occurrences of the consecutive step patterns 010 or 101, where 1=up and 0=down; triangle T(n,k), n >= 0, k = max(0, n-3), read by rows.
11
1, 1, 2, 6, 14, 10, 52, 36, 32, 204, 254, 140, 122, 1010, 1368, 1498, 620, 544, 5466, 9704, 9858, 9358, 3164, 2770, 34090, 67908, 90988, 72120, 63786, 18116, 15872, 233026, 545962, 762816, 839678, 560658, 470262, 115356, 101042, 1765836, 4604360, 7458522
OFFSET
0,3
LINKS
EXAMPLE
Triangle T(n,k) begins:
: 1;
: 1;
: 2;
: 6;
: 14, 10;
: 52, 36, 32;
: 204, 254, 140, 122;
: 1010, 1368, 1498, 620, 544;
: 5466, 9704, 9858, 9358, 3164, 2770;
: 34090, 67908, 90988, 72120, 63786, 18116, 15872;
: 233026, 545962, 762816, 839678, 560658, 470262, 115356, 101042;
MAPLE
b:= proc(u, o, t, h) option remember; expand(
`if`(u+o=0, 1, `if`(t=0, add(b(u-j, j-1, 1$2), j=1..u),
add(`if`(h=3, x, 1)*b(u-j, o+j-1, [1, 3, 1][t], 2), j=1..u)+
add(`if`(t=3, x, 1)*b(u+j-1, o-j, 2, [1, 3, 1][h]), j=1..o))))
end:
T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n, 0$3)):
seq(T(n), n=0..12);
MATHEMATICA
b[u_, o_, t_, h_] := b[u, o, t, h] = Expand[If[u + o == 0, 1, If[t == 0, Sum[b[u - j, j - 1, 1, 1], {j, 1, u}], Sum[If[h == 3, x, 1]*b[u - j, o + j - 1, {1, 3, 1}[[t]], 2], {j, 1, u}] + Sum[If[t == 3, x, 1]*b[u + j - 1, o - j, 2, {1, 3, 1}[[h]]], {j, 1, o}]]]];
T[n_] := Function[p, Table[Coefficient[p, x, i], {i, 0, Exponent[p, x]}]][ b[n, 0, 0, 0]];
Table[T[n], {n, 0, 12}] // Flatten (* Jean-François Alcover, Jun 07 2018, from Maple *)
CROSSREFS
Column k=0 gives A295974.
Last elements of rows for n>3 give: A001250, A260786, 2*A000111.
Row sums give A000142.
Sequence in context: A058054 A054588 A084106 * A263691 A160657 A222087
KEYWORD
nonn,tabf
AUTHOR
Alois P. Heinz, Dec 01 2017
STATUS
approved