OFFSET
0,3
LINKS
Alois P. Heinz, Rows n = 0..170, flattened
EXAMPLE
T(5,1) = 16: 13254, 14253, 14352, 15243, 15342, 23154, 24153, 24351, 25143, 25341, 34152, 34251, 35142, 35241, 45132, 45231.
T(7,2) = 272: 1325476, 1326475, 1326574, ..., 6735241, 6745132, 6745231.
Triangle T(n,k) begins:
: 0 : 1;
: 1 : 1;
: 2 : 2;
: 3 : 6;
: 4 : 24;
: 5 : 104, 16;
: 6 : 528, 192;
: 7 : 3296, 1472, 272;
: 8 : 23168, 12800, 4352;
: 9 : 179712, 132352, 42880, 7936;
: 10 : 1573632, 1366016, 530432, 158720;
MAPLE
b:= proc(u, o, t) option remember; `if`(u+o=0, 1, expand(
add(b(u-j, o+j-1, [1, 3, 1, 3][t])*`if`(t=4, x, 1), j=1..u)+
add(b(u+j-1, o-j, [2, 2, 4, 2][t]), j=1..o)))
end:
T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n, 0, 1)):
seq(T(n), n=0..15); # Alois P. Heinz, Oct 30 2013
MATHEMATICA
b[u_, o_, t_] := b[u, o, t] = If[u+o == 0, 1, Expand[Sum[b[u-j, o+j-1, {1, 3, 1, 3}[[t]]]*If[t == 4, x, 1], {j, 1, u}] + Sum[b[u+j-1, o-j, {2, 2, 4, 2}[[t]]], {j, 1, o}]]]; T[n_] := Function[p, Table[Coefficient[p, x, i], {i, 0, Exponent[p, x]}]][b[n, 0, 1]]; Table[T[n], {n, 0, 15}] // Flatten (* Jean-François Alcover, Oct 24 2016, after Alois P. Heinz *)
CROSSREFS
KEYWORD
nonn,tabf
AUTHOR
Alois P. Heinz, Oct 30 2013
STATUS
approved