login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A295986
Number of maximal cliques in the n-halved cube graph.
1
1, 1, 1, 16, 56, 192, 624, 1920, 5632, 15872, 43264, 114688, 296960, 753664, 1880064, 4620288, 11206656, 26869760, 63766528, 149946368, 349700096, 809500672, 1861222400, 4253024256, 9663676416, 21843935232, 49140465664, 110058536960, 245484224512, 545460846592
OFFSET
1,4
LINKS
Eric Weisstein's World of Mathematics, Halved Cube Graph
Eric Weisstein's World of Mathematics, Maximal Clique
FORMULA
a(n) = 2^(n - 4)*(n^2 - 5*n + 12)*(n + 2)/3 for n > 3.
a(n) = 8*a(n-1) - 24*a(n-2) + 32*a(n-3) - 16*a(n-4) for n > 7.
G.f.: x*(1 - 7*x + 17*x^2 - 64*x^4 + 112*x^5 - 64*x^6) / (1 - 2*x)^4. - Colin Barker, Dec 11 2017
MATHEMATICA
Table[If[n < 4, 1, 2^(n - 4) (n^2 - 5 n + 12) (n + 2)/3], {n, 12}]
Join[{1, 1, 1}, LinearRecurrence[{8, -24, 32, -16}, {16, 56, 192, 624}, 30]]
CoefficientList[Series[(1 - 7 x + 17 x^2 - 64 x^4 + 112 x^5 - 64 x^6)/(-1 + 2 x)^4, {x, 0, 20}], x]
PROG
(PARI) Vec(x*(1 - 7*x + 17*x^2 - 64*x^4 + 112*x^5 - 64*x^6) / (1 - 2*x)^4 + O(x^40)) \\ Colin Barker, Dec 11 2017
CROSSREFS
Sequence in context: A231971 A333279 A304692 * A169882 A202993 A221068
KEYWORD
nonn,easy
AUTHOR
Eric W. Weisstein, Dec 01 2017
STATUS
approved