login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A295986 Number of maximal cliques in the n-halved cube graph. 1
1, 1, 1, 16, 56, 192, 624, 1920, 5632, 15872, 43264, 114688, 296960, 753664, 1880064, 4620288, 11206656, 26869760, 63766528, 149946368, 349700096, 809500672, 1861222400, 4253024256, 9663676416, 21843935232, 49140465664, 110058536960, 245484224512, 545460846592 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,4

LINKS

Colin Barker, Table of n, a(n) for n = 1..1000

Eric Weisstein's World of Mathematics, Halved Cube Graph

Eric Weisstein's World of Mathematics, Maximal Clique

Index entries for linear recurrences with constant coefficients, signature (8, -24, 32, -16).

FORMULA

a(n) = 2^(n - 4)*(n^2 - 5*n + 12)*(n + 2)/3 for n > 3.

a(n) = 8*a(n-1) - 24*a(n-2) + 32*a(n-3) - 16*a(n-4) for n > 7.

G.f.: x*(1 - 7*x + 17*x^2 - 64*x^4 + 112*x^5 - 64*x^6) / (1 - 2*x)^4. - Colin Barker, Dec 11 2017

MATHEMATICA

Table[If[n < 4, 1, 2^(n - 4) (n^2 - 5 n + 12) (n + 2)/3], {n, 12}]

Join[{1, 1, 1}, LinearRecurrence[{8, -24, 32, -16}, {16, 56, 192, 624}, 30]]

CoefficientList[Series[(1 - 7 x + 17 x^2 - 64 x^4 + 112 x^5 - 64 x^6)/(-1 + 2 x)^4, {x, 0, 20}], x]

PROG

(PARI) Vec(x*(1 - 7*x + 17*x^2 - 64*x^4 + 112*x^5 - 64*x^6) / (1 - 2*x)^4 + O(x^40)) \\ Colin Barker, Dec 11 2017

CROSSREFS

Sequence in context: A231971 A333279 A304692 * A169882 A202993 A221068

Adjacent sequences:  A295983 A295984 A295985 * A295987 A295988 A295989

KEYWORD

nonn,easy

AUTHOR

Eric W. Weisstein, Dec 01 2017

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 9 13:09 EDT 2021. Contains 343742 sequences. (Running on oeis4.)