login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A295989
Irregular triangle T(n, k), read by rows, n >= 0 and 0 <= k < A001316(n): T(n, k) is the (k+1)-th nonnegative number m such that n AND m = m (where AND denotes the bitwise AND operator).
13
0, 0, 1, 0, 2, 0, 1, 2, 3, 0, 4, 0, 1, 4, 5, 0, 2, 4, 6, 0, 1, 2, 3, 4, 5, 6, 7, 0, 8, 0, 1, 8, 9, 0, 2, 8, 10, 0, 1, 2, 3, 8, 9, 10, 11, 0, 4, 8, 12, 0, 1, 4, 5, 8, 9, 12, 13, 0, 2, 4, 6, 8, 10, 12, 14, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 0
OFFSET
0,5
COMMENTS
The (n+1)-th row has A001316(n) terms and sums to n * A001316(n) / 2.
For any n >= 0 and k such that 0 <= k < A001316(n):
- if A000120(n) > 0 then T(n, 1) = A006519(n),
- if A000120(n) > 1 then T(n, 2) = 2^A285099(n),
- if A000120(n) > 0 then T(n, A001316(n)/2 - 1) = A053645(n),
- if A000120(n) > 0 then T(n, A001316(n)/2) = 2^A000523(n),
- if A000120(n) > 0 then T(n, A001316(n) - 2) = A129760(n),
- T(n, A001316(n) - 1) = n,
- the six previous relations correspond respectively (when applicable) to the second term, the third term, the pair of central terms, the penultimate term and the last term of a row,
- T(n, k) AND T(n, A001316(n) - k - 1) = 0,
- T(n, k) + T(n, A001316(n) - k - 1) = n,
- T(n, k) = k for any k < A006519(n+1),
- A000120(T(n, k)) = A000120(k).
If we plot (n, T(n,k)) then we obtain a skewed Sierpinski triangle (see Links section).
If interpreted as a flat sequence a(n) for n >= 0:
- a(n) = 0 iff n = A006046(k) for some k >= 0,
- a(n) = 1 iff n = A006046(2*k + 1) + 1 for some k >= 0,
- a(A006046(k) - 1) = k - 1 for any k > 0.
FORMULA
For any n >= 0 and k such that 0 <= k < A001316(n):
- T(n, 0) = 0,
- T(2*n, k) = 2*T(n, k),
- T(2*n+1, 2*k) = 2*T(n, k),
- T(2*n+1, 2*k+1) = 2*T(n, k) + 1.
EXAMPLE
Triangle begins:
0: [0]
1: [0, 1]
2: [0, 2]
3: [0, 1, 2, 3]
4: [0, 4]
5: [0, 1, 4, 5]
6: [0, 2, 4, 6]
7: [0, 1, 2, 3, 4, 5, 6, 7]
8: [0, 8]
9: [0, 1, 8, 9]
10: [0, 2, 8, 10]
11: [0, 1, 2, 3, 8, 9, 10, 11]
12: [0, 4, 8, 12]
13: [0, 1, 4, 5, 8, 9, 12, 13]
14: [0, 2, 4, 6, 8, 10, 12, 14]
15: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]
MATHEMATICA
A295989row[n_] := Select[Range[0, n], BitAnd[#, n-#] == 0 &];
Array[A295989row, 25, 0] (* Paolo Xausa, Feb 24 2024 *)
PROG
(PARI) T(n, k) = if (k==0, 0, n%2==0, 2*T(n\2, k), k%2==0, 2*T(n\2, k\2), 2*T(n\2, k\2)+1)
CROSSREFS
First column of array in A352909.
Sequence in context: A221469 A350369 A117398 * A240852 A363612 A309816
KEYWORD
nonn,tabf,look,base
AUTHOR
Rémy Sigrist, Dec 02 2017
STATUS
approved