login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A232933
Number T(n,k) of permutations of [n] with exactly k (possibly overlapping, cyclic wrap-around) occurrences of the consecutive step pattern UDU (U=up, D=down); triangle T(n,k), n>=0, 0<=k<=floor(n/2), read by rows.
4
1, 1, 0, 2, 3, 3, 12, 4, 8, 35, 45, 40, 144, 348, 132, 96, 910, 1862, 1316, 952, 5976, 11600, 14808, 5760, 2176, 39942, 100260, 123606, 63360, 35712, 306570, 919270, 1069910, 910650, 343040, 79360, 2698223, 8427243, 11694397, 10673641, 4477440, 1945856
OFFSET
0,4
LINKS
EXAMPLE
T(2,1) = 2: 12, 21 (the two U's of UDU overlap).
T(3,0) = 3: 132, 213, 321.
T(3,1) = 3: 123, 231, 312.
T(4,0) = 12: 1243, 1342, 1432, 2134, 2143, 2431, 3124, 3214, 3421, 4213, 4312, 4321.
T(4,1) = 4: 1234, 2341, 3412, 4123.
T(4,2) = 8: 1324, 1423, 2314, 2413, 3142, 3241, 4132, 4231.
Triangle T(n,k) begins:
: 0 : 1;
: 1 : 1;
: 2 : 0, 2;
: 3 : 3, 3;
: 4 : 12, 4, 8;
: 5 : 35, 45, 40;
: 6 : 144, 348, 132, 96;
: 7 : 910, 1862, 1316, 952;
: 8 : 5976, 11600, 14808, 5760, 2176;
: 9 : 39942, 100260, 123606, 63360, 35712;
: 10 : 306570, 919270, 1069910, 910650, 343040, 79360;
MAPLE
b:= proc(u, o, t) option remember; `if`(u+o=0,
`if`(t=2, x, 1), expand(
add(b(u+j-1, o-j, 2)*`if`(t=3, x, 1), j=1..o)+
add(b(u-j, o+j-1, `if`(t=2, 3, 1)), j=1..u)))
end:
T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))
(`if`(n<2, 1, n* b(0, n-1, 1))):
seq(T(n), n=0..12);
MATHEMATICA
b[u_, o_, t_] := b[u, o, t] = If[u + o == 0, If[t == 2, x, 1], Expand[Sum[ b[u + j - 1, o - j, 2]*If[t == 3, x, 1], {j, 1, o}] + Sum[b[u - j, o + j - 1, If[t == 2, 3, 1]], {j, 1, u}]]];
T[n_] := Function[p, Table[Coefficient[p, x, i], {i, 0, Exponent[p, x]}]] [If[n < 2, 1, n*b[0, n - 1, 1]]];
T /@ Range[0, 12] // Flatten (* Jean-François Alcover, Dec 19 2020, after Alois P. Heinz *)
CROSSREFS
Column k=0 gives A232899.
Row sums give A000142.
T(2n,n) gives A009752(n) = 2n * A000182(n) for n>0.
T(2n+1,n) gives (2n+1) * A024283(n) for n>0.
Cf. A295987.
Sequence in context: A112858 A161960 A287428 * A303700 A196837 A275212
KEYWORD
nonn,tabf
AUTHOR
Alois P. Heinz, Dec 02 2013
STATUS
approved