Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #19 Jun 07 2018 04:22:07
%S 1,1,2,6,14,10,52,36,32,204,254,140,122,1010,1368,1498,620,544,5466,
%T 9704,9858,9358,3164,2770,34090,67908,90988,72120,63786,18116,15872,
%U 233026,545962,762816,839678,560658,470262,115356,101042,1765836,4604360,7458522
%N Number T(n,k) of permutations of [n] with exactly k (possibly overlapping) occurrences of the consecutive step patterns 010 or 101, where 1=up and 0=down; triangle T(n,k), n >= 0, k = max(0, n-3), read by rows.
%H Alois P. Heinz, <a href="/A295987/b295987.txt">Rows n = 0..143, flattened</a>
%e Triangle T(n,k) begins:
%e : 1;
%e : 1;
%e : 2;
%e : 6;
%e : 14, 10;
%e : 52, 36, 32;
%e : 204, 254, 140, 122;
%e : 1010, 1368, 1498, 620, 544;
%e : 5466, 9704, 9858, 9358, 3164, 2770;
%e : 34090, 67908, 90988, 72120, 63786, 18116, 15872;
%e : 233026, 545962, 762816, 839678, 560658, 470262, 115356, 101042;
%p b:= proc(u, o, t, h) option remember; expand(
%p `if`(u+o=0, 1, `if`(t=0, add(b(u-j, j-1, 1$2), j=1..u),
%p add(`if`(h=3, x, 1)*b(u-j, o+j-1, [1, 3, 1][t], 2), j=1..u)+
%p add(`if`(t=3, x, 1)*b(u+j-1, o-j, 2, [1, 3, 1][h]), j=1..o))))
%p end:
%p T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n, 0$3)):
%p seq(T(n), n=0..12);
%t b[u_, o_, t_, h_] := b[u, o, t, h] = Expand[If[u + o == 0, 1, If[t == 0, Sum[b[u - j, j - 1, 1, 1], {j, 1, u}], Sum[If[h == 3, x, 1]*b[u - j, o + j - 1, {1, 3, 1}[[t]], 2], {j, 1, u}] + Sum[If[t == 3, x, 1]*b[u + j - 1, o - j, 2, {1, 3, 1}[[h]]], {j, 1, o}]]]];
%t T[n_] := Function[p, Table[Coefficient[p, x, i], {i, 0, Exponent[p, x]}]][ b[n, 0, 0, 0]];
%t Table[T[n], {n, 0, 12}] // Flatten (* _Jean-François Alcover_, Jun 07 2018, from Maple *)
%Y Column k=0 gives A295974.
%Y Last elements of rows for n>3 give: A001250, A260786, 2*A000111.
%Y Row sums give A000142.
%Y Cf. A227884, A230695, A230797, A231384, A232933, A242783, A242819, A242820, A296054.
%K nonn,tabf
%O 0,3
%A _Alois P. Heinz_, Dec 01 2017