login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A222087
Numbers n for which A222084(n)= A222084(A222085(n)).
1
1, 2, 6, 14, 15, 20, 22, 24, 33, 38, 46, 49, 51, 52, 62, 63, 86, 87, 91, 92, 93, 95, 118, 119, 121, 141, 142, 143, 145, 147, 148, 153, 158, 159, 165, 166, 169, 183, 198, 206, 210, 215, 217, 219, 244, 247, 249, 253, 262, 267, 270, 278, 279, 286, 287, 295, 301
OFFSET
1,2
COMMENTS
Similar to A037197 but using tau#(n), number of the least divisors of n whose LCM is equal to n, as defined in A222084, and sigma#(n), sum of the least divisors of n whose LCM is equal to n, as defined in A222085: tau#(n)=tau#(sigma#(n)).
If we add also the restriction tau(n)=tau(sigma(n)) we have: 2, 52, 1525, 83667, 116162,…
LINKS
EXAMPLE
n=20; tau#(20)=4, sigma#(20)=12 and tau#(sigma#(20))=tau#(12)=4.
MAPLE
with(numtheory);
A222087:=proc(q)
local a, b, c, j, n, t, v;
print(1);
for n from 2 to q do
a:=ifactors(n)[2]; b:=nops(a); c:=0; v:=0;
for j from 1 to b do if a[j][1]^a[j][2]>c then c:=a[j][1]^a[j][2]; fi; od;
a:=op(sort([op(divisors(n))])); b:=nops(divisors(n));
for j from 1 to b do v:=v+a[j]; if a[j]=c then break; fi; od; t:=j;
a:=ifactors(v)[2]; b:=nops(a); c:=0;
for j from 1 to b do if a[j][1]^a[j][2]>c then c:=a[j][1]^a[j][2]; fi; od;
a:=op(sort([op(divisors(v))])); b:=nops(divisors(v));
for j from 1 to b do if a[j]=c then break; fi; od; if t=j then print(n);
fi; od; end:
A222087(10000000000);
KEYWORD
nonn
AUTHOR
Paolo P. Lava, Feb 13 2013
STATUS
approved