Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #10 Feb 18 2013 09:05:17
%S 1,2,6,14,15,20,22,24,33,38,46,49,51,52,62,63,86,87,91,92,93,95,118,
%T 119,121,141,142,143,145,147,148,153,158,159,165,166,169,183,198,206,
%U 210,215,217,219,244,247,249,253,262,267,270,278,279,286,287,295,301
%N Numbers n for which A222084(n)= A222084(A222085(n)).
%C Similar to A037197 but using tau#(n), number of the least divisors of n whose LCM is equal to n, as defined in A222084, and sigma#(n), sum of the least divisors of n whose LCM is equal to n, as defined in A222085: tau#(n)=tau#(sigma#(n)).
%C If we add also the restriction tau(n)=tau(sigma(n)) we have: 2, 52, 1525, 83667, 116162,…
%H Paolo P. Lava, <a href="/A222087/b222087.txt">Table of n, a(n) for n = 1..1000</a>
%e n=20; tau#(20)=4, sigma#(20)=12 and tau#(sigma#(20))=tau#(12)=4.
%p with(numtheory);
%p A222087:=proc(q)
%p local a,b,c,j,n,t,v;
%p print(1);
%p for n from 2 to q do
%p a:=ifactors(n)[2]; b:=nops(a); c:=0; v:=0;
%p for j from 1 to b do if a[j][1]^a[j][2]>c then c:=a[j][1]^a[j][2]; fi; od;
%p a:=op(sort([op(divisors(n))])); b:=nops(divisors(n));
%p for j from 1 to b do v:=v+a[j]; if a[j]=c then break; fi; od; t:=j;
%p a:=ifactors(v)[2]; b:=nops(a); c:=0;
%p for j from 1 to b do if a[j][1]^a[j][2]>c then c:=a[j][1]^a[j][2]; fi; od;
%p a:=op(sort([op(divisors(v))])); b:=nops(divisors(v));
%p for j from 1 to b do if a[j]=c then break; fi; od; if t=j then print(n);
%p fi; od; end:
%p A222087(10000000000);
%Y Cf. A000005, A000961, A001358, A003418, A005179, A024619, A034444, A077610, A222084, A222085.
%K nonn
%O 1,2
%A _Paolo P. Lava_, Feb 13 2013