login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A222089
Where records occur in A222084.
1
1, 2, 4, 8, 16, 24, 48, 96, 192, 384, 480, 768, 960, 1920, 3840, 5760, 7680, 11520, 19440, 23040, 26880, 46080, 53760, 80640, 107520, 161280, 215040, 322560, 612360, 645120, 967680, 1224720, 1290240, 1935360, 2580480, 3870720, 5160960, 6451200, 7096320
OFFSET
1,2
COMMENTS
Like A002182 but using tau#(n), as defined in A222084, instead of tau(n).
EXAMPLE
tau#(8)=4 and not until n=16 this value is overtaken: tau#(16)=5.
MAPLE
with(numtheory);
A222089:=proc(q)
local a, b, c, j, n, t;
t:=0;
for n from 1 to q do
a:=ifactors(n)[2]; b:=nops(a); c:=0;
for j from 1 to b do if a[j][1]^a[j][2]>c then c:=a[j][1]^a[j][2]; fi; od;
a:=op(sort([op(divisors(n))])); b:=nops(divisors(n));
for j from 1 to b do if a[j]=c then break; fi; od;
if j>t then t:=j; print(n); fi;
od; end:
A222089(10000000000);
MATHEMATICA
f[n_]:= Module[{d = Divisors[n], k = 1}, While [LCM@@d[[1;; k]] != n, k++]; k]; fm=0; s={}; Do[f1=f[n]; If[f1>fm, fm=f1; AppendTo[s, n]], {n, 1, 10000}]; s (* Amiram Eldar, Jan 19 2019 *)
PROG
(PARI) f(n) = {my(d = divisors(n), k = 1); while (lcm(vector(k, j, d[j])) != n, k++); k; } \\ A222084
lista(nn) = {my(m=0, nm); for( n=1, nn, if ((nm=f(n)) > m, print1(n, ", "); m = nm); ); } \\ Michel Marcus, Jan 19 2019
KEYWORD
nonn
AUTHOR
Paolo P. Lava, Feb 13 2013
EXTENSIONS
a(2) inserted and a(32)-a(39) added by Amiram Eldar, Jan 19 2019
STATUS
approved