OFFSET
1,2
COMMENTS
Also, integers n such that B(n)*n == 193 (mod n), where B(n) is the n-th Bernoulli number.
Also, integers n such that Sum_{prime p, (p-1) divides n} n/p == -193 (mod n).
Although this sequence is finite, the prime 193 does not belong to A302345.
LINKS
M. A. Alekseyev, J. M. Grau, A. M. Oller-Marcen. Computing solutions to the congruence 1^n + 2^n + ... + n^n == p (mod n). Discrete Applied Mathematics, 2018. doi:10.1016/j.dam.2018.05.022 arXiv:1602.02407 [math.NT]
CROSSREFS
KEYWORD
nonn,fini,full
AUTHOR
Max Alekseyev, Apr 05 2018
STATUS
approved