|
|
A226962
|
|
Numbers n such that 1^n + 2^n + 3^n + ... + n^n == 4 (mod n).
|
|
10
|
|
|
|
OFFSET
|
1,2
|
|
COMMENTS
|
Also, numbers n such that B(n)*n == 4 (mod n), where B(n) is the n-th Bernoulli number. Equivalently, SUM[prime p, (p-1) divides n] n/p == -4 (mod n). There are no other terms below 10^15. - Max Alekseyev, Aug 26 2013
|
|
LINKS
|
|
|
MATHEMATICA
|
Select[Range[10000], Mod[Sum[PowerMod[i, #, #], {i, #}], #] == 4 &]
|
|
PROG
|
|
|
CROSSREFS
|
Solutions to 1^n+2^n+...+n^n == m (mod n): A005408 (m=0), A014117 (m=1), A226960 (m=2), A226961 (m=3), this sequence (m=4), A226963 (m=5), A226964 (m=6), A226965 (m=7), A226966 (m=8), A226967 (m=9), A280041 (m=19), A280043 (m=43), A302343 (m=79), A302344 (m=193).
|
|
KEYWORD
|
nonn,more
|
|
AUTHOR
|
|
|
EXTENSIONS
|
|
|
STATUS
|
approved
|
|
|
|