login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A226962
Numbers n such that 1^n + 2^n + 3^n + ... + n^n == 4 (mod n).
10
1, 8, 24, 168, 7224
OFFSET
1,2
COMMENTS
Also, numbers n such that B(n)*n == 4 (mod n), where B(n) is the n-th Bernoulli number. Equivalently, SUM[prime p, (p-1) divides n] n/p == -4 (mod n). There are no other terms below 10^15. - Max Alekseyev, Aug 26 2013
MATHEMATICA
Select[Range[10000], Mod[Sum[PowerMod[i, #, #], {i, #}], #] == 4 &]
PROG
(PARI) is(n)=Mod(sumdiv(n, d, if(isprime(d+1), n/(d+1))), n)==-4 \\ Charles R Greathouse IV, Nov 13 2013
CROSSREFS
Cf. A031971.
Solutions to 1^n+2^n+...+n^n == m (mod n): A005408 (m=0), A014117 (m=1), A226960 (m=2), A226961 (m=3), this sequence (m=4), A226963 (m=5), A226964 (m=6), A226965 (m=7), A226966 (m=8), A226967 (m=9), A280041 (m=19), A280043 (m=43), A302343 (m=79), A302344 (m=193).
Sequence in context: A098070 A100042 A061027 * A221784 A052656 A094061
KEYWORD
nonn,more
AUTHOR
EXTENSIONS
a(1)=1 prepended by Max Alekseyev, Aug 26 2013
STATUS
approved