OFFSET
1,2
COMMENTS
Equivalently, numbers n such that B(n)*n == 3 (mod n), where B(n) is the n-th Bernoulli number. Equivalently, SUM[prime p, (p-1) divides n] n/p == -3 (mod n). - Max Alekseyev, Aug 25 2013
LINKS
M. A. Alekseyev, J. M. Grau, A. M. Oller-Marcen. Computing solutions to the congruence 1^n + 2^n + ... + n^n == p (mod n). Discrete Applied Mathematics, 2018. doi:10.1016/j.dam.2018.05.022 arXiv:1602.02407 [math.NT]
MATHEMATICA
Select[Range[10000], Mod[Sum[PowerMod[i, #, #], {i, #}], #] == 3 &]
PROG
(PARI) is(n)=Mod(sumdiv(n, d, if(isprime(d+1), n/(d+1))), n)==-3 \\ Charles R Greathouse IV, Nov 13 2013
CROSSREFS
KEYWORD
nonn,fini,full
AUTHOR
José María Grau Ribas, Jun 24 2013
EXTENSIONS
1, 2, 3 prepended by Max Alekseyev, Aug 25 2013
STATUS
approved