The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A226961 Numbers n such that 1^n + 2^n + 3^n + ... + n^n == 3 (mod n). 11
 1, 2, 3, 18, 126, 5418 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS Equivalently, numbers n such that B(n)*n == 3 (mod n), where B(n) is the n-th Bernoulli number. Equivalently, SUM[prime p, (p-1) divides n] n/p == -3 (mod n). - Max Alekseyev, Aug 25 2013 LINKS M. A. Alekseyev, J. M. Grau, A. M. Oller-Marcen. Computing solutions to the congruence 1^n + 2^n + ... + n^n == p (mod n). Discrete Applied Mathematics, 2018. doi:10.1016/j.dam.2018.05.022 arXiv:1602.02407 [math.NT] MATHEMATICA Select[Range[10000], Mod[Sum[PowerMod[i, #, #], {i, #}], #] == 3 &] PROG (PARI) is(n)=Mod(sumdiv(n, d, if(isprime(d+1), n/(d+1))), n)==-3 \\ Charles R Greathouse IV, Nov 13 2013 CROSSREFS Cf. A031971. Solutions to 1^n+2^n+...+n^n == m (mod n): A005408 (m=0), A014117 (m=1), A226960 (m=2), this sequence (m=3), A226962 (m=4), A226963 (m=5), A226964 (m=6), A226965 (m=7), A226966 (m=8), A226967 (m=9), A280041 (m=19), A280043 (m=43), A302343 (m=79), A302344 (m=193). Sequence in context: A288492 A184719 A076016 * A107095 A102939 A073983 Adjacent sequences:  A226958 A226959 A226960 * A226962 A226963 A226964 KEYWORD nonn,fini,full AUTHOR José María Grau Ribas, Jun 24 2013 EXTENSIONS 1, 2, 3 prepended by Max Alekseyev, Aug 25 2013 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 24 06:56 EDT 2021. Contains 346273 sequences. (Running on oeis4.)