OFFSET
4,1
COMMENTS
In many cases, with three knights in different corners the sum of the distances between them will equal the triameter (specifically when n mod 12 is 0, 2, 3, 4, 7, 8, 11). In other cases, moving one of pieces by one square will increase the total distance by 2. It has not been proven that these constructions are optimal. - Andrew Howroyd, Apr 06 2018
LINKS
Eric Weisstein's World of Mathematics, Graph Triameter
Eric Weisstein's World of Mathematics, Knight Graph
Index entries for linear recurrences with constant coefficients, signature (1,0,0,0,0,0,0,0,0,0,0,1,-1).
FORMULA
a(n) = 20 + a(n-12) for n > 25. - Andrew Howroyd, Apr 06 2018
a(n) = 20*k + a(n-12*k) for n > 12*k+5. - Eric W. Weisstein, Apr 15 2018
a(n) = a(n-1) + a(n-12) - a(n-13) for n > 19. - Eric W. Weisstein, Apr 14 2018
G.f.: 2*x^4*(6 + 2*x^4 + x^6 + x^7 + x^8 + x^10 + x^11 - 5*x^12 + x^13 + x^14)/((-1 + x)^2*(1 + x + x^2 + x^3 + x^4 + x^5 + x^6 + x^7 + x^8 + x^9 + x^10 + x^11)). - Eric W. Weisstein, Apr 14 2018
MATHEMATICA
Join[{12, 12}, Table[1/6 (8 + 2 (-1)^n + 10 n + Cos[n Pi/3] (1 - 2 (-1)^n Cos[n Pi/2]) + Cos[2 n Pi/3] - Sqrt[3] Sin[n Pi/3] + 2 Cos[n Pi/2] (1 + (-1)^n Sqrt[3] Sin[n Pi/3]) - (5 Sin[2 n Pi/3])/Sqrt[3]), {n, 6, 67}]] (* Eric W. Weisstein, Apr 14 2018 *)
Join[{12, 12}, LinearRecurrence[{1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1}, {12, 12, 16, 16, 18, 20, 22, 22, 24, 26, 28, 30, 32}, 62]] (* Eric W. Weisstein, Apr 14 2018 *)
CoefficientList[Series[2 (6 + 2 x^4 + x^6 + x^7 + x^8 + x^10 + x^11 - 5 x^12 + x^13 + x^14)/((-1 + x)^2 (1 + x + x^2 + x^3 + x^4 + x^5 + x^6 + x^7 + x^8 + x^9 + x^10 + x^11)), {x, 0, 63}], x] (* Eric W. Weisstein, Apr 14 2018 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Eric W. Weisstein, Apr 05 2018
EXTENSIONS
a(31)-a(50) from Andrew Howroyd, Apr 06 2018
a(51)-a(67) from Giovanni Resta, Apr 09 2018
STATUS
approved