login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A158096 G.f.: A(x) = exp( Sum_{n>=1} x^n/n * 2^(n^2)/(1 + 2^(n^2)*x^n) ). 3
1, 2, 6, 188, 16614, 6744492, 11466697660, 80444371592472, 2306003921102413254, 268654794307394089145676, 126765597337037378441876059252, 241678070947171631269022075304755208, 1858395916567280733577643964109494506976348, 57560683587055569906379529978030563771752589955832 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Compare to g.f. of A010054:

exp( Sum_{n>=1} x^n/(1 + x^n)/n ) = 1 + x + x^3 + x^6 + x^10 +...

LINKS

Table of n, a(n) for n=0..13.

FORMULA

G.f.: exp( Sum_{n>=1} x^n/n * Sum_{d|n} -(-1)^d * 2^(n^2/d) * d ). - Paul D. Hanna, Oct 02 2015

Logarithmic derivative equals A262826.

EXAMPLE

G.f.: A(x) = 1 + 2*x + 6*x^2 + 188*x^3 + 16614*x^4 + 6744492*x^5 +...

where

log(A(x)) = 2/(1 + 2*x)*x + 2^4/(1 + 2^4*x^2)*x^2/2 + 2^9/(1 + 2^9*x^3)*x^3/3 + 2^16/(1 + 2^16*x^4)*x^4/4 + 2^25/(1 + 2^25*x^5)*x^5/5 +...

Explicitly,

log(A(x)) = 2*x + 8*x^2/2 + 536*x^3/3 + 64960*x^4/4 + 33554592*x^5/5 + 68718964352*x^6/6 + 562949953422208*x^7/7 +...+ A262826(n)*x^n/n +...

PROG

(PARI) {a(n)=if(n==0, 1, polcoeff(exp(sum(k=1, n, x^k/k * 2^(k^2)/(1 + 2^(k^2)*x^k +x*O(x^n)))), n))}

for(n=0, 20, print1(a(n), ", "))

(PARI) {a(n) = polcoeff( exp( sum(m=1, n, x^m/m * sumdiv(m, d, -(-1)^d * 2^(m^2/d) * d) ) +x*O(x^n)), n)}

for(n=0, 20, print1(a(n), ", ")) \\ Paul D. Hanna, Oct 02 2015

CROSSREFS

Cf. A262826 (log), A262825, A158097, A155200.

Sequence in context: A298883 A252740 A055696 * A345726 A302344 A156517

Adjacent sequences:  A158093 A158094 A158095 * A158097 A158098 A158099

KEYWORD

nonn

AUTHOR

Paul D. Hanna, Mar 26 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 17 07:39 EDT 2021. Contains 348048 sequences. (Running on oeis4.)