login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A158097
G.f.: A(x) = exp( Sum_{n>=1} x^n/n * 2^(n^2)/(1 - 2^(n^2)*x^n) ).
2
1, 2, 14, 204, 16982, 6746636, 11467009772, 80444425963128, 2306004014991374374, 268654794950955551450892, 126765597355485863873077402788, 241678070949320869650125781001909864
OFFSET
0,2
COMMENTS
Compare to g.f. of the partition numbers A000041:
exp( Sum_{n>=1} x^n/(1 - x^n)/n ) = 1 + x + 2*x^2 + 3*x^3 + 5*x^4 +...
FORMULA
G.f.: exp( Sum_{n>=1} x^n/n * Sum_{d|n} 2^(n*d) * n/d ).
EXAMPLE
G.f.: A(x) = 1 + 2*x + 14*x^2 + 204*x^3 + 16982*x^4 + 6746636*x^5 +...
log(A(x)) = 2*x + 24*x^2/2 + 536*x^3/3 + 66112*x^4/4 + 33554592*x^5/5 +...
log(A(x)) = 2*x/(1-2*x) + 2^4*x^2/(1-2^4*x^2)/2 + 2^9*x^3/(1-2^9*x^3)/3 +...
PROG
(PARI) {a(n)=if(n==0, 1, polcoeff(exp(sum(k=1, n, (2^k*x)^k/(1-(2^k*x)^k +x*O(x^n))/k)), n))}
for(n=0, 15, print1(a(n), ", "))
(PARI) {a(n) = polcoeff( exp( sum(m=1, n, x^m/m * sumdiv(m, d, 2^(m*d) * m/d) ) +x*O(x^n)), n)}
for(n=0, 15, print1(a(n), ", ")) \\ Paul D. Hanna, Sep 30 2015
CROSSREFS
Sequence in context: A262008 A054652 A122647 * A262003 A271847 A136550
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Mar 26 2009
STATUS
approved