login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A158093
a(n) = 3^(n^2+n)*C(1/3^n, n) = [x^n] (1 + 3^(n+1)*x)^(1/3^n).
5
1, 3, -36, 6201, -10519740, 168009075234, -24937507748845692, 34147337933260567913832, -429040882807948915054596365580, 49262806958277650055073574841789707655
OFFSET
0,2
COMMENTS
A(1) = Sum_{n>=0} C(1/3^n,n) = Sum_{n>=0} log(1+1/3^n)^n/n! = 1.293240509200709604261070...
LINKS
FORMULA
G.f.: A(x) = Sum_{n>=0} a(n)*x^n/3^(n^2+n) = Sum_{n>=0} log(1+x/3^n)^n/n!.
EXAMPLE
G.f.: A(x) = 1 +3*x/3^2 -36*x^2/3^6 +6201*x^3/3^12 -10519740*x^4/3^20 +...
A(x) = 1 + log(1+x/3) + log(1+x/9)^2/2! + log(1+x/27)^3/3! +...+ log(1+x/3^n)^n/n! +...
Illustrate a(n) = [x^n] (1 + 3^(n+1)*x)^(1/3^n):
(1+9*x)^(1/3) = 1 + (3)*x - 9*x^2 + 45*x^3 - 270*x^4 +...
(1+27*x)^(1/9) = 1 + 3*x - (36)*x^2 + 612*x^3 - 11934*x^4 +...
(1+81*x)^(1/27) = 1 + 3*x - 117*x^2 + (6201)*x^3 - 372060*x^4 +...
(1+243*x)^(1/81) = 1 + 3*x - 360*x^2 + 57960*x^3 - (10519740)*x^4 +...
Special values of A(x).
A(1) = 1 + log(4/3) + log(10/9)^2/2! + log(28/27)^3/3! +...
A(3) = 1 + log(2) + log(4/3)^2/2! + log(10/9)^3/3! +...
A(9) = 1 + log(4) + log(2)^2/2! + log(4/3)^3/3! + log(10/9)^4/4! +...
A(r) = 2 at r=4.50548200106313905...
A(r) = 3 at r=12.21509538023664538...
A(r) = 4 at r=22.9609516534592247304...
PROG
(PARI) a(n)=3^(n^2+n)*binomial(1/3^n, n)
CROSSREFS
KEYWORD
sign
AUTHOR
Paul D. Hanna, Apr 21 2009
STATUS
approved