login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A168370
a(n) = coefficient of x^n in the (3^n)-th power of 1 + Sum_{k>=0} x^(3^k) for n>=0.
0
1, 3, 36, 2952, 1670220, 6781419711, 204255279577440, 47027922196061266047, 84798672814179921118709052, 1219732878003607687535196405346440, 141916059665284234793191571472586402539060
OFFSET
0,2
FORMULA
G.f.: A(x) = Sum_{n>=0} log(F(3^n*x))^n/n! where F(x) = 1 + Sum_{n>=0} x^(3^n).
EXAMPLE
G.f.: A(x) = 1 + 3*x + 36*x^2 + 2952*x^3 + 1670220*x^4 +...
Let F(x) = 1 + x + x^3 + x^9 + x^27 + x^81 +...+ x^(3^n) +...
then A(x) = 1 + log(F(3x)) + log(F(9x))^2/2! + log(F(27x))^3/3! +...+ log(F(3^n*x))^n/n! +...
Also, coefficients in powers F(x)^(3^n) begin:
F^1:[(1),1,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,...];
F^3:[1,(3),3,4,6,3,3,3,0,4,6,3,6,6,0,3,0,0,3,3,0,3,0,0,0,0,0,4,...];
F^9:[1,9,(36),93,198,378,624,918,1269,1606,1908,2277,2634,3060,...];
F^27:[1,27,351,(2952),18252,89505,366561,1300455,4101435,11713287,...];
F^81:[1,81,3240,85401,(1670220),25877556,331198416,3605580540,...];
F^243:[1,243,29403,2362284,141781266,(6781419711),269282151567,...];
F^729:[1,729,265356,64305333,11671816338,1692529329582,(204255279577440), ...]; ...
where the coefficients in parenthesis form the initial terms of this sequence.
PROG
(PARI) {a(n)=local(G=1+sum(m=0, ceil(log(n+3)/log(3)), x^(3^m))+x*O(x^n)); polcoeff(G^(3^n), n)}
(PARI) {a(n)=local(G=1+sum(m=0, ceil(log(n+3)/log(3)), x^(3^m))+x*O(x^n)); polcoeff(sum(m=0, n, log(subst(G, x, 3^m*x))^m/m!), n)}
CROSSREFS
Cf. A168369 (variant).
Sequence in context: A102579 A368076 A136393 * A325907 A158093 A163966
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Nov 24 2009
STATUS
approved