Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #2 Mar 30 2012 18:37:20
%S 1,3,36,2952,1670220,6781419711,204255279577440,47027922196061266047,
%T 84798672814179921118709052,1219732878003607687535196405346440,
%U 141916059665284234793191571472586402539060
%N a(n) = coefficient of x^n in the (3^n)-th power of 1 + Sum_{k>=0} x^(3^k) for n>=0.
%F G.f.: A(x) = Sum_{n>=0} log(F(3^n*x))^n/n! where F(x) = 1 + Sum_{n>=0} x^(3^n).
%e G.f.: A(x) = 1 + 3*x + 36*x^2 + 2952*x^3 + 1670220*x^4 +...
%e Let F(x) = 1 + x + x^3 + x^9 + x^27 + x^81 +...+ x^(3^n) +...
%e then A(x) = 1 + log(F(3x)) + log(F(9x))^2/2! + log(F(27x))^3/3! +...+ log(F(3^n*x))^n/n! +...
%e Also, coefficients in powers F(x)^(3^n) begin:
%e F^1:[(1),1,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,...];
%e F^3:[1,(3),3,4,6,3,3,3,0,4,6,3,6,6,0,3,0,0,3,3,0,3,0,0,0,0,0,4,...];
%e F^9:[1,9,(36),93,198,378,624,918,1269,1606,1908,2277,2634,3060,...];
%e F^27:[1,27,351,(2952),18252,89505,366561,1300455,4101435,11713287,...];
%e F^81:[1,81,3240,85401,(1670220),25877556,331198416,3605580540,...];
%e F^243:[1,243,29403,2362284,141781266,(6781419711),269282151567,...];
%e F^729:[1,729,265356,64305333,11671816338,1692529329582,(204255279577440), ...]; ...
%e where the coefficients in parenthesis form the initial terms of this sequence.
%o (PARI) {a(n)=local(G=1+sum(m=0,ceil(log(n+3)/log(3)),x^(3^m))+x*O(x^n));polcoeff(G^(3^n),n)}
%o (PARI) {a(n)=local(G=1+sum(m=0,ceil(log(n+3)/log(3)),x^(3^m))+x*O(x^n));polcoeff(sum(m=0,n,log(subst(G,x,3^m*x))^m/m!),n)}
%Y Cf. A168369 (variant).
%K nonn
%O 0,2
%A _Paul D. Hanna_, Nov 24 2009