|
|
A136393
|
|
a(n) = C(3^n,n).
|
|
11
|
|
|
1, 3, 36, 2925, 1663740, 6774333588, 204208594169580, 47025847059877940202, 84798009611754271531960140, 1219731290030242386267605060168700, 141916030352038369973126553950792759280336
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
LINKS
|
Vincenzo Librandi, Table of n, a(n) for n = 0..45
|
|
FORMULA
|
G.f.: A(x) = Sum_{n>=0} log(1 + 3^n*x)^n / n!.
a(n) ~ 3^(n^2)/n!. - Vaclav Kotesovec, Jul 02 2016
|
|
MATHEMATICA
|
Table[Binomial[3^n, n], {n, 0, 10}] (* Vaclav Kotesovec, Jul 02 2016 *)
|
|
PROG
|
(PARI) a(n)=binomial(3^n, n)
(PARI) /* G.f. A(x) as Sum of Series: */
a(n)=polcoeff(sum(k=0, n, log(1+3^k*x +x*O(x^n))^k/k!), n)
(MAGMA) [Binomial(3^n, n): n in [0..25]]; // Vincenzo Librandi, Sep 13 2016
|
|
CROSSREFS
|
Cf. A014070 (C(2^n, n)).
Sequence in context: A193302 A289315 A102579 * A168370 A325907 A158093
Adjacent sequences: A136390 A136391 A136392 * A136394 A136395 A136396
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Paul D. Hanna, Dec 28 2007
|
|
STATUS
|
approved
|
|
|
|