login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A136393
a(n) = C(3^n,n).
11
1, 3, 36, 2925, 1663740, 6774333588, 204208594169580, 47025847059877940202, 84798009611754271531960140, 1219731290030242386267605060168700, 141916030352038369973126553950792759280336
OFFSET
0,2
LINKS
FORMULA
G.f.: A(x) = Sum_{n>=0} log(1 + 3^n*x)^n / n!.
a(n) = (1/n!) * Sum_{k=0..n} Stirling1(n, k) * 3^(n*k). - Paul D. Hanna, Feb 05 2023
a(n) ~ 3^(n^2)/n!. - Vaclav Kotesovec, Jul 02 2016
MATHEMATICA
Table[Binomial[3^n, n], {n, 0, 10}] (* Vaclav Kotesovec, Jul 02 2016 *)
PROG
(PARI) a(n)=binomial(3^n, n)
(PARI) /* G.f. A(x) as Sum of Series: */
a(n)=polcoeff(sum(k=0, n, log(1+3^k*x +x*O(x^n))^k/k!), n)
(PARI) {a(n) = (1/n!) * sum(k=0, n, stirling(n, k, 1) * 3^(n*k) )}
for(n=0, 20, print1(a(n), ", ")) \\ Paul D. Hanna, Feb 05 2023
(Magma) [Binomial(3^n, n): n in [0..25]]; // Vincenzo Librandi, Sep 13 2016
CROSSREFS
Cf. A014070 (C(2^n, n)).
Sequence in context: A289315 A102579 A368076 * A168370 A325907 A158093
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Dec 28 2007
STATUS
approved