The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60th year, we have over 367,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A136394 Triangle read by rows: T(n,k) is the number of permutations of an n-set having k cycles of size > 1 (0<=k<=floor(n/2)). 14
 1, 1, 1, 1, 1, 5, 1, 20, 3, 1, 84, 35, 1, 409, 295, 15, 1, 2365, 2359, 315, 1, 16064, 19670, 4480, 105, 1, 125664, 177078, 56672, 3465, 1, 1112073, 1738326, 703430, 74025, 945, 1, 10976173, 18607446, 8941790, 1346345, 45045, 1, 119481284, 216400569, 118685336 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,6 LINKS Alois P. Heinz, Rows n = 0..200, flattened Jean-Luc Baril and Sergey Kirgizov, Transformation à la Foata for special kinds of descents and excedances, arXiv:2101.01928 [math.CO], 2021. See Theorem 2. p. 5. FindStat - Combinatorial Statistic Finder, The number of nontrivial cycles of a permutation pi in its cycle decomposition Bin Han, Jianxi Mao, and Jiang Zeng, Equidistributions around special kinds of descents and excedances, arXiv:2103.13092 [math.CO], 2021, see page 2. FORMULA E.g.f.: exp(x*(1-y))/(1-x)^y. Binomial transform of triangle A008306. exp(x)*((-x-log(1-x))^k)/k! is e.g.f. of k-th column. From Alois P. Heinz, Jul 13 2017: (Start) T(2n,n) = A001147(n). T(2n+1,n) = A051577(n) = (2*n+3)!!/3 = A001147(n+2)/3. (End) From Alois P. Heinz, Aug 17 2023: (Start) Sum_{k=0..floor(n/2)} k * T(n,k) = A001705(n-1) for n>=1. Sum_{k=0..floor(n/2)} (-1)^k * T(n,k) = A159964(n-1) for n>=1. (End) EXAMPLE Triangle (n,k) begins: 1; 1; 1, 1; 1, 5; 1, 20, 3; 1, 84, 35; 1, 409, 295, 15; 1, 2365, 2359, 315; ... MAPLE egf:= proc(k::nonnegint) option remember; x-> exp(x)* ((-x-ln(1-x))^k)/k! end; T:= (n, k)-> coeff(series(egf(k)(x), x=0, n+1), x, n) *n!; seq(seq(T(n, k), k=0..n/2), n=0..30); # Alois P. Heinz, Aug 14 2008 # second Maple program: b:= proc(n) option remember; expand(`if`(n=0, 1, add(b(n-i)* `if`(i>1, x, 1)*binomial(n-1, i-1)*(i-1)!, i=1..n))) end: T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n)): seq(T(n), n=0..15); # Alois P. Heinz, Sep 25 2016 # third Maple program: T:= proc(n, k) option remember; `if`(k<0 or k>2*n, 0, `if`(n=0, 1, add(T(n-i, k-`if`(i>1, 1, 0))* mul(n-j, j=1..i-1), i=1..n))) end: seq(seq(T(n, k), k=0..n/2), n=0..15); # Alois P. Heinz, Jul 16 2017 MATHEMATICA max = 12; egf = Exp[x*(1-y)]/(1-x)^y; s = Series[egf, {x, 0, max}, {y, 0, max}] // Normal; t[n_, k_] := SeriesCoefficient[s, {x, 0, n}, {y, 0, k}]*n!; t[0, 0] = t[1, 0] = 1; Table[t[n, k], {n, 0, max}, {k, 0, n/2}] // Flatten (* Jean-François Alcover, Jan 28 2014 *) CROSSREFS Columns k=0-10 give: A000012, A006231, A289950, A289951, A289952, A289953, A289954, A289955, A289956, A289957, A289958. Row sums give A000142. Cf. A000276, A000483, A001147, A001705, A051577, A124324, A159964. Sequence in context: A147437 A147369 A066480 * A145372 A145373 A088577 Adjacent sequences: A136391 A136392 A136393 * A136395 A136396 A136397 KEYWORD easy,nonn,tabf,look AUTHOR Vladeta Jovovic, May 03 2008 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 4 10:15 EST 2023. Contains 367560 sequences. (Running on oeis4.)