login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60th year, we have over 367,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A136394 Triangle read by rows: T(n,k) is the number of permutations of an n-set having k cycles of size > 1 (0<=k<=floor(n/2)). 14
1, 1, 1, 1, 1, 5, 1, 20, 3, 1, 84, 35, 1, 409, 295, 15, 1, 2365, 2359, 315, 1, 16064, 19670, 4480, 105, 1, 125664, 177078, 56672, 3465, 1, 1112073, 1738326, 703430, 74025, 945, 1, 10976173, 18607446, 8941790, 1346345, 45045, 1, 119481284, 216400569, 118685336 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,6
LINKS
Jean-Luc Baril and Sergey Kirgizov, Transformation à la Foata for special kinds of descents and excedances, arXiv:2101.01928 [math.CO], 2021. See Theorem 2. p. 5.
Bin Han, Jianxi Mao, and Jiang Zeng, Equidistributions around special kinds of descents and excedances, arXiv:2103.13092 [math.CO], 2021, see page 2.
FORMULA
E.g.f.: exp(x*(1-y))/(1-x)^y. Binomial transform of triangle A008306. exp(x)*((-x-log(1-x))^k)/k! is e.g.f. of k-th column.
From Alois P. Heinz, Jul 13 2017: (Start)
T(2n,n) = A001147(n).
T(2n+1,n) = A051577(n) = (2*n+3)!!/3 = A001147(n+2)/3. (End)
From Alois P. Heinz, Aug 17 2023: (Start)
Sum_{k=0..floor(n/2)} k * T(n,k) = A001705(n-1) for n>=1.
Sum_{k=0..floor(n/2)} (-1)^k * T(n,k) = A159964(n-1) for n>=1. (End)
EXAMPLE
Triangle (n,k) begins:
1;
1;
1, 1;
1, 5;
1, 20, 3;
1, 84, 35;
1, 409, 295, 15;
1, 2365, 2359, 315;
...
MAPLE
egf:= proc(k::nonnegint) option remember; x-> exp(x)* ((-x-ln(1-x))^k)/k! end; T:= (n, k)-> coeff(series(egf(k)(x), x=0, n+1), x, n) *n!; seq(seq(T(n, k), k=0..n/2), n=0..30); # Alois P. Heinz, Aug 14 2008
# second Maple program:
b:= proc(n) option remember; expand(`if`(n=0, 1, add(b(n-i)*
`if`(i>1, x, 1)*binomial(n-1, i-1)*(i-1)!, i=1..n)))
end:
T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n)):
seq(T(n), n=0..15); # Alois P. Heinz, Sep 25 2016
# third Maple program:
T:= proc(n, k) option remember; `if`(k<0 or k>2*n, 0,
`if`(n=0, 1, add(T(n-i, k-`if`(i>1, 1, 0))*
mul(n-j, j=1..i-1), i=1..n)))
end:
seq(seq(T(n, k), k=0..n/2), n=0..15); # Alois P. Heinz, Jul 16 2017
MATHEMATICA
max = 12; egf = Exp[x*(1-y)]/(1-x)^y; s = Series[egf, {x, 0, max}, {y, 0, max}] // Normal; t[n_, k_] := SeriesCoefficient[s, {x, 0, n}, {y, 0, k}]*n!; t[0, 0] = t[1, 0] = 1; Table[t[n, k], {n, 0, max}, {k, 0, n/2}] // Flatten (* Jean-François Alcover, Jan 28 2014 *)
CROSSREFS
Row sums give A000142.
Sequence in context: A147437 A147369 A066480 * A145372 A145373 A088577
KEYWORD
easy,nonn,tabf,look
AUTHOR
Vladeta Jovovic, May 03 2008
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 4 10:15 EST 2023. Contains 367560 sequences. (Running on oeis4.)