The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A159964 a(n) = 2^n*(1-n). 6
 1, 0, -4, -16, -48, -128, -320, -768, -1792, -4096, -9216, -20480, -45056, -98304, -212992, -458752, -983040, -2097152, -4456448, -9437184, -19922944, -41943040, -88080384, -184549376, -385875968, -805306368, -1677721600, -3489660928 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS Hankel transform of A124791. Binomial transform of -A060747. {1} U A159964 is a composition of generating functions of A165747 and A000012, with H=G(F(x)) with F(x) for A000012 and G(x) for A165747. - Oboifeng Dira, Aug 29 2019 LINKS Table of n, a(n) for n=0..27. Oboifeng Dira, A Note on Composition and Recursion, Southeast Asian Bulletin of Mathematics (2017), Vol. 41, Issue 6, 849-853. Index entries for linear recurrences with constant coefficients, signature (4,-4). FORMULA G.f.: (1-4x)/(1-2x)^2. a(n) = -A058922(n). - Jeffrey R. Goodwin, Nov 11 2011 E.g.f.: U(0) where U(k)= 1 - 2*x/(2 - 4/(2 - (k+1)/U(k+1))) ; (continued fraction, 3-step). - Sergei N. Gladkovskii, Oct 18 2012 a(n) = Sum_{k=0..n} (1-2k) * C(n,k). - Wesley Ivan Hurt, Sep 23 2017 From Amiram Eldar, Jan 13 2021: (Start) Sum_{n>=2} 1/a(n) = -log(2)/2. Sum_{n>=2} (-1)^n/a(n) = -log(3/2)/2. (End) MATHEMATICA LinearRecurrence[{4, -4}, {1, 0}, 30] (* Harvey P. Dale, May 02 2016 *) CROSSREFS Cf. A058922, A060747, A124791. Sequence in context: A071009 A210066 A131126 * A058922 A215723 A034918 Adjacent sequences: A159961 A159962 A159963 * A159965 A159966 A159967 KEYWORD easy,sign AUTHOR Paul Barry, Apr 28 2009 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 25 10:34 EDT 2024. Contains 371967 sequences. (Running on oeis4.)