login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A058922
a(n) = n*2^n - 2^n.
9
0, 4, 16, 48, 128, 320, 768, 1792, 4096, 9216, 20480, 45056, 98304, 212992, 458752, 983040, 2097152, 4456448, 9437184, 19922944, 41943040, 88080384, 184549376, 385875968, 805306368, 1677721600, 3489660928, 7247757312, 15032385536, 31138512896, 64424509440, 133143986176
OFFSET
1,2
COMMENTS
A hierarchical sequence (S(W'2{2}*c) - see A059126).
a(n) = -det(M(n+1)) where M(n) is the n X n matrix with m(i,i)=1, m(i,j)=-i/j for i != j. - Benoit Cloitre, Feb 01 2003
FORMULA
With offset 0, this is 4n*2^(n-1), the binomial transform of 4n. - Paul Barry, May 20 2003
a(1)=0, a(n) = 2*a(n-1) + 2^n for n>1. - Philippe Deléham, Apr 20 2009
a(n) = A000337(n) - 1. - Omar E. Pol, Feb 22 2010
From R. J. Mathar, Mar 01 2010: (Start)
a(n)= 4*a(n-1) - 4*a(n-2).
G.f.: 4*x^2/(2*x-1)^2. (End)
From Amiram Eldar, Jan 12 2021: (Start)
Sum_{n>=2} 1/a(n) = log(2)/2.
Sum_{n>=2} (-1)^n/a(n) = log(3/2)/2. (End)
MATHEMATICA
Table[n*2^n-2^n, {n, 100}] (* Vladimir Joseph Stephan Orlovsky, Jan 15 2011 *)
PROG
(PARI) a(n) = { n*2^n - 2^n } \\ Harry J. Smith, Jun 24 2009
(Haskell)
a058922 n = (n - 1) * 2 ^ n
a058922_list = zipWith (*) [0..] $ tail a000079_list
-- Reinhard Zumkeller, Jul 11 2014
CROSSREFS
A001787(n) = a(n+1)/4. A073346(n, n-2) = a(n-2).
Cf. A000337. - Omar E. Pol, Feb 22 2010
Sequence in context: A210066 A131126 A159964 * A215723 A034918 A119003
KEYWORD
nonn,changed
AUTHOR
N. J. A. Sloane, Jan 12 2001
STATUS
approved