login
A136395
Binomial transform of [1, 3, 4, 3, 2, 0, 0, 0, ...].
1
1, 4, 11, 25, 51, 96, 169, 281, 445, 676, 991, 1409, 1951, 2640, 3501, 4561, 5849, 7396, 9235, 11401, 13931, 16864, 20241, 24105, 28501, 33476, 39079, 45361, 52375, 60176, 68821, 78369, 88881, 100420, 113051, 126841, 141859, 158176, 175865, 195001
OFFSET
0,2
FORMULA
A007318 * [1, 3, 4, 3, 2, 0, 0, 0, ...]. A001263 * [1, 3, 1, 0, 0, 0, ...]
O.g.f.: -(1-x+x^2+x^4)/(-1+x)^5. - R. J. Mathar, Apr 02 2008
EXAMPLE
a(3) = 25 = (1, 3, 3, 1) dot (1, 3, 4, 3) = (1 + 9 + 12 + 3).
a(3) = 25 = (1, 6, 6, 1) dot (1, 3, 1, 0) = (1 + 18 + 6 + 0), where (1, 6, 6, 1) = row 4 of the Narayana triangle, A001263.
MAPLE
a := n-> (Matrix([[11, 4, 1, 1, 5]]). Matrix(5, (i, j)-> if (i=j-1) then 1 elif j=1 then [5, -10, 10, -5, 1][i] else 0 fi)^n)[1, 3]; seq (a(n), n=0..50); # Alois P. Heinz, Aug 14 2008
MATHEMATICA
CoefficientList[Series[-(1-x+x^2+x^4)/(-1+x)^5, {x, 0, 40}], x] (* or *) LinearRecurrence[{5, -10, 10, -5, 1}, {1, 4, 11, 25, 51}, 40] (* Harvey P. Dale, Dec 27 2016 *)
CROSSREFS
Cf. A001263.
Sequence in context: A215052 A011851 A193912 * A014160 A014162 A014169
KEYWORD
nonn,easy
AUTHOR
Gary W. Adamson, Dec 29 2007
EXTENSIONS
More terms from R. J. Mathar, Apr 02 2008
More terms from Alois P. Heinz, Aug 14 2008
STATUS
approved