login
A193912
Partial sums of A193911.
1
1, 4, 11, 25, 50, 93, 162, 272, 439, 694, 1069, 1627, 2432, 3611, 5292, 7730, 11181, 16156, 23167, 33237, 47390, 67673, 96134, 136868, 193971, 275634, 390049, 553599, 782668, 1110023, 1568432, 2223430, 3140553, 4450872, 6285459, 8906457, 12576010, 17818405
OFFSET
1,2
FORMULA
a(n) = Sum_{i=1..n} 1/8*(2^(i/2+2)*((10-7*sqrt(2))*(-1)^(i) + 10 + 7*sqrt(2))-(-1)^(i)-2*i*(i+12)-79).
G.f.: x*(1+x-x^2)/((1-x)^4*(1+x)*(1-2*x^2)). - Alexander R. Povolotsky, Aug 12 2011
a(n) = (1/32)*( (-1/2)^n + 32*(41*sqrt(2)-58)*(sqrt(2)-2)^n - 32*(58+41*sqrt(2))*(-2-sqrt(2))^n ).
EXAMPLE
We have A193911(1)=1, A193911(2)=3, and A193911(3)=7. Thus a(1)=1, a(2)=4, and a(3)=11.
MATHEMATICA
LinearRecurrence[{3, 0, -8, 7, 3, -6, 2}, {1, 4, 11, 25, 50, 93, 162}, 40] (* Harvey P. Dale, Sep 09 2015 *)
CoefficientList[Series[(1 + x - x^2)/((1 - x)^4*(1 + x)*(1 - 2*x^2)), {x, 0, 50}], x] (* G. C. Greubel, Feb 25 2017 *)
PROG
(PARI) my(x='x+O('x^50)); Vec((1+x-x^2)/((1-x)^4*(1+x)*(1-2*x^2))) \\ G. C. Greubel, Feb 25 2017
CROSSREFS
Sequence in context: A036837 A215052 A011851 * A136395 A014160 A014162
KEYWORD
nonn,easy
AUTHOR
Jeffrey R. Goodwin, Aug 08 2011
STATUS
approved