The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A000276 Associated Stirling numbers. (Formerly M3075 N1248) 7
 3, 20, 130, 924, 7308, 64224, 623376, 6636960, 76998240, 967524480, 13096736640, 190060335360, 2944310342400, 48503818137600, 846795372595200, 15618926924697600, 303517672703078400, 6198400928176128000, 132720966600284160000, 2973385109386137600000 (list; graph; refs; listen; history; text; internal format)
 OFFSET 4,1 COMMENTS a(n) is also the number of permutations of n elements, without any fixed point, with exactly two cycles. - Shanzhen Gao, Sep 15 2010 REFERENCES L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 256. J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 75. N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence). N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). Shanzhen Gao, Permutations with Restricted Structure (in preparation). LINKS Alois P. Heinz, Table of n, a(n) for n = 4..150 FORMULA a(n) = (n-1)!*Sum_{i=2..n-2} 1/i = (n-1)!*(Psi(n-1)+gamma-1). - Vladeta Jovovic, Aug 19 2003 With alternating signs: Ramanujan polynomials psi_3(n-2, x) evaluated at 1. - Ralf Stephan, Apr 16 2004 E.g.f.: ((x+log(1-x))^2)/2. [Corrected by Vladeta Jovovic, May 03 2008] a(n) = Sum_{i=2..floor((n-1)/2)} n!/((n-i)*i) + Sum_{i=ceiling(n/2)..floor(n/2)} n!/(2*(n-i)*i). - Shanzhen Gao, Sep 15 2010 a(n) = (n+3)!*(h(n+2)-1), with offset 0, where h(n)=sum(1/k,k=1..n). - Gary Detlefs, Sep 11 2010 Conjecture: (-n+2)*a(n) +(n-1)*(2*n-5)*a(n-1) -(n-1)*(n-2)*(n-3)*a(n-2)=0. - R. J. Mathar, Jul 18 2015 Conjecture: a(n) +2*(-n+2)*a(n-1) +(n^2-6*n+10)*a(n-2) +(n-3)*(n-4)*a(n-3)=0. - R. J. Mathar, Jul 18 2015 a(n) = A000254(n-1) - (n-1)! - (n-2)!. - Anton Zakharov, Sep 24 2016 EXAMPLE a(4) = 3 because we have: (12)(34),(13)(24),(14)(23). - Geoffrey Critzer, Nov 03 2012 MATHEMATICA nn=25; a=Log[1/(1-x)]-x; Drop[Range[0, nn]!CoefficientList[Series[a^2/2, {x, 0, nn}], x], 4]  (* Geoffrey Critzer, Nov 03 2012 *) a[n_] := (n-1)!*(HarmonicNumber[n-2]-1); Table[a[n], {n, 4, 23}] (* Jean-François Alcover, Feb 06 2016, after Gary Detlefs *) PROG (PARI) a(n) = (n-1)!*sum(i=2, n-2, 1/i); \\ Michel Marcus, Feb 06 2016 CROSSREFS A diagonal of triangle in A008306. Cf. A052518, A052881, A259456. Sequence in context: A167590 A228884 A138910 * A216778 A056306 A056298 Adjacent sequences:  A000273 A000274 A000275 * A000277 A000278 A000279 KEYWORD nonn AUTHOR EXTENSIONS More terms from Christian G. Bower STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 3 14:32 EDT 2020. Contains 333197 sequences. (Running on oeis4.)