OFFSET
4,1
COMMENTS
a(n) is also the number of permutations of n elements, without any fixed point, with exactly two cycles. - Shanzhen Gao, Sep 15 2010
REFERENCES
L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 256.
J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 75.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Shanzhen Gao, Permutations with Restricted Structure (in preparation).
LINKS
Alois P. Heinz, Table of n, a(n) for n = 4..150
FORMULA
a(n) = (n-1)!*Sum_{i=2..n-2} 1/i = (n-1)!*(Psi(n-1)+gamma-1). - Vladeta Jovovic, Aug 19 2003
With alternating signs: Ramanujan polynomials psi_3(n-2, x) evaluated at 1. - Ralf Stephan, Apr 16 2004
E.g.f.: ((x+log(1-x))^2)/2. [Corrected by Vladeta Jovovic, May 03 2008]
a(n) = Sum_{i=2..floor((n-1)/2)} n!/((n-i)*i) + Sum_{i=ceiling(n/2)..floor(n/2)} n!/(2*(n-i)*i). - Shanzhen Gao, Sep 15 2010
a(n) = (n+3)!*(h(n+2)-1), with offset 0, where h(n)=sum(1/k,k=1..n). - Gary Detlefs, Sep 11 2010
Conjecture: (-n+2)*a(n) +(n-1)*(2*n-5)*a(n-1) -(n-1)*(n-2)*(n-3)*a(n-2)=0. - R. J. Mathar, Jul 18 2015
Conjecture: a(n) +2*(-n+2)*a(n-1) +(n^2-6*n+10)*a(n-2) +(n-3)*(n-4)*a(n-3)=0. - R. J. Mathar, Jul 18 2015
a(n) = A000254(n-1) - (n-1)! - (n-2)!. - Anton Zakharov, Sep 24 2016
EXAMPLE
a(4) = 3 because we have: (12)(34),(13)(24),(14)(23). - Geoffrey Critzer, Nov 03 2012
MATHEMATICA
nn=25; a=Log[1/(1-x)]-x; Drop[Range[0, nn]!CoefficientList[Series[a^2/2, {x, 0, nn}], x], 4] (* Geoffrey Critzer, Nov 03 2012 *)
a[n_] := (n-1)!*(HarmonicNumber[n-2]-1); Table[a[n], {n, 4, 23}] (* Jean-François Alcover, Feb 06 2016, after Gary Detlefs *)
PROG
(PARI) a(n) = (n-1)!*sum(i=2, n-2, 1/i); \\ Michel Marcus, Feb 06 2016
CROSSREFS
KEYWORD
nonn
AUTHOR
EXTENSIONS
More terms from Christian G. Bower
STATUS
approved